The measurement of low-level radioactivity using high-purity germanium(HPGe)detectors is important in applications such as environmental background radiation,material screening,and rare decays.The dead layers,dead zon...The measurement of low-level radioactivity using high-purity germanium(HPGe)detectors is important in applications such as environmental background radiation,material screening,and rare decays.The dead layers,dead zones,aluminum shell thickness,and diameter of Ge crystals are the most influential factors affecting the performance of HPGe detectors;hence,precise modeling of the physical conditions of the detectors is highly desirable.In this study,the GEANT4 simulation framework with an optimized detector geometry adequately replicated the experimentally recorded spectrum.These detector simulations explored the idea of realizing a dead zone(an inactive volume)at the backend of an n-type coaxial Gecrystal.Using multigamma sources,the effect of true coincidence summing(TCS)on the full energy peak(FEP)efficiency calibration of an HPGe detector was investigated as a function of sample-to-detector distance.Good agreements between the simulated and experimental efficiencies as well as the simulated and analytically calculated summing coincidence correction coefficients were achieved.At a short distance between the source and detector,calculating the correction factors for a strong source posed challenges owing to significant deadtime and pile-up effects of the detection system.The described methodology can efficiently determine summing peak probabilities at short sample-to-detector distances.展开更多
基金supported by the Natural Science Foundation of Gansu Province(No.22JR5RA118)the National Natural Science Foundation of China(Nos.12121005 and U1932138)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34010000)。
文摘The measurement of low-level radioactivity using high-purity germanium(HPGe)detectors is important in applications such as environmental background radiation,material screening,and rare decays.The dead layers,dead zones,aluminum shell thickness,and diameter of Ge crystals are the most influential factors affecting the performance of HPGe detectors;hence,precise modeling of the physical conditions of the detectors is highly desirable.In this study,the GEANT4 simulation framework with an optimized detector geometry adequately replicated the experimentally recorded spectrum.These detector simulations explored the idea of realizing a dead zone(an inactive volume)at the backend of an n-type coaxial Gecrystal.Using multigamma sources,the effect of true coincidence summing(TCS)on the full energy peak(FEP)efficiency calibration of an HPGe detector was investigated as a function of sample-to-detector distance.Good agreements between the simulated and experimental efficiencies as well as the simulated and analytically calculated summing coincidence correction coefficients were achieved.At a short distance between the source and detector,calculating the correction factors for a strong source posed challenges owing to significant deadtime and pile-up effects of the detection system.The described methodology can efficiently determine summing peak probabilities at short sample-to-detector distances.