In the context of global climate change,the increasing frequency of extreme weather events presents significant challenges to urban water systems.This study focuses on the Beijing section of the Beijing-Hangzhou Grand...In the context of global climate change,the increasing frequency of extreme weather events presents significant challenges to urban water systems.This study focuses on the Beijing section of the Beijing-Hangzhou Grand Canal,introduces the SEE model,and develops an integrated“comprehensive water environment simulation model”to systematically examine the path for enhancing its climate resilience.Through the coupling of multiple models(MIKE 11,MIKE URBAN,MIKE 21)and scenario simulations,this study analyzes the response mechanisms of various governance strategies under extreme climate conditions.The research proposes four specific measures to enhance resilience:dual-scenario simulation of climate and governance,identification and reinforcement of weak points in resilience,parametric modeling of ecological restoration interventions,and the development of a“digital twin canal system”.The research findings indicate that the system integration of the SEE model substantially improves the adaptability,endurance,and recovery capacity of canals in response to climate shocks,including heavy rainfall and drought.This provides a scientific foundation and a practical path for achieving long-term resilience and sustainable development of urban water systems.展开更多
Lithography is a Key enabling technique in modern micro/nano scale technology.Achieving the optimal trade-off between resolution,throughput,and cost remains a central focus in the ongoing development.However,current l...Lithography is a Key enabling technique in modern micro/nano scale technology.Achieving the optimal trade-off between resolution,throughput,and cost remains a central focus in the ongoing development.However,current lithographic techniques such as direct-write,projection,and extreme ultraviolet lithography achieve higher resolution at the expense of increased complexity in optical systems or the use of shorter-wavelength light sources,thus raising the overall cost of production.Here,we present a cost-effective and wafer-level perfect conformal contact lithography at the diffraction limit.By leveraging a transferable photoresist,the technique ensures optimal contact between the mask and photoresist with zero-gap,facilitating the transfer of patterns at the diffraction limit while maintaining high fidelity and uniformity across large wafers.This technique applies to a wide range of complex surfaces,including non-conductive glass surfaces,flexible substrates,and curved surfaces.The proposed technique expands the potential of contact photolithography for novel device architectures and practic al manufacturing processes.展开更多
基金National Natural Science Foundation of China(51775196)Guangzhou Pearl River New Talent Project(201710010064)+2 种基金High-level Personnel Special Support Plan of Guangdong Province(2016TQ03X289)International Science and Technology Cooperation Program of Guangdong Province Science and Technology Project(2017A050501058)Guangdong Province Science and Technology Project(2017B090912003,2015B010125006)
基金Sponsored by 2025 Postgraduate Teaching Reform Project of North China University of Technology。
文摘In the context of global climate change,the increasing frequency of extreme weather events presents significant challenges to urban water systems.This study focuses on the Beijing section of the Beijing-Hangzhou Grand Canal,introduces the SEE model,and develops an integrated“comprehensive water environment simulation model”to systematically examine the path for enhancing its climate resilience.Through the coupling of multiple models(MIKE 11,MIKE URBAN,MIKE 21)and scenario simulations,this study analyzes the response mechanisms of various governance strategies under extreme climate conditions.The research proposes four specific measures to enhance resilience:dual-scenario simulation of climate and governance,identification and reinforcement of weak points in resilience,parametric modeling of ecological restoration interventions,and the development of a“digital twin canal system”.The research findings indicate that the system integration of the SEE model substantially improves the adaptability,endurance,and recovery capacity of canals in response to climate shocks,including heavy rainfall and drought.This provides a scientific foundation and a practical path for achieving long-term resilience and sustainable development of urban water systems.
基金supported by the National Key Research and Development Program of China (2022YFB4602600)National Natural Science Foundation of China (Grant Nos. 52425508 & 52221001)the Hunan Provincial Natural Science Foundation of China (2025JJ60286)。
文摘Lithography is a Key enabling technique in modern micro/nano scale technology.Achieving the optimal trade-off between resolution,throughput,and cost remains a central focus in the ongoing development.However,current lithographic techniques such as direct-write,projection,and extreme ultraviolet lithography achieve higher resolution at the expense of increased complexity in optical systems or the use of shorter-wavelength light sources,thus raising the overall cost of production.Here,we present a cost-effective and wafer-level perfect conformal contact lithography at the diffraction limit.By leveraging a transferable photoresist,the technique ensures optimal contact between the mask and photoresist with zero-gap,facilitating the transfer of patterns at the diffraction limit while maintaining high fidelity and uniformity across large wafers.This technique applies to a wide range of complex surfaces,including non-conductive glass surfaces,flexible substrates,and curved surfaces.The proposed technique expands the potential of contact photolithography for novel device architectures and practic al manufacturing processes.