In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of...In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of two stages:smoothing and thresholding,thus referred to as smoothing-and-thresholding(SaT).In the first stage,a smoothed image is obtained by an AITV-regularized Mumford-Shah(MS)model,which can be solved efficiently by the alternating direction method of multipliers(ADMMs)with a closed-form solution of a proximal operator of the l_(1)-αl_(2) regularizer.The convergence of the ADMM algorithm is analyzed.In the second stage,we threshold the smoothed image by K-means clustering to obtain the final segmentation result.Numerical experiments demonstrate that the proposed segmentation framework is versatile for both grayscale and color images,effcient in producing high-quality segmentation results within a few seconds,and robust to input images that are corrupted with noise,blur,or both.We compare the AITV method with its original convex TV and nonconvex TVP(O<p<1)counterparts,showcasing the qualitative and quantitative advantages of our proposed method.展开更多
基金partially supported by the NSF grants DMS-1854434,DMS-1952644,DMS-2151235,DMS-2219904,and CAREER 1846690。
文摘In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of two stages:smoothing and thresholding,thus referred to as smoothing-and-thresholding(SaT).In the first stage,a smoothed image is obtained by an AITV-regularized Mumford-Shah(MS)model,which can be solved efficiently by the alternating direction method of multipliers(ADMMs)with a closed-form solution of a proximal operator of the l_(1)-αl_(2) regularizer.The convergence of the ADMM algorithm is analyzed.In the second stage,we threshold the smoothed image by K-means clustering to obtain the final segmentation result.Numerical experiments demonstrate that the proposed segmentation framework is versatile for both grayscale and color images,effcient in producing high-quality segmentation results within a few seconds,and robust to input images that are corrupted with noise,blur,or both.We compare the AITV method with its original convex TV and nonconvex TVP(O<p<1)counterparts,showcasing the qualitative and quantitative advantages of our proposed method.