Video tracking is a complex problem because the environment, in which video motion needs to be tracked, is widely varied based on the application and poses several constraints on the design and performance of the trac...Video tracking is a complex problem because the environment, in which video motion needs to be tracked, is widely varied based on the application and poses several constraints on the design and performance of the tracking system. Current datasets that are used to evaluate and compare video motion tracking algorithms use a cumulative performance measure without thoroughly analyzing the effect of these different constraints imposed by the environment. But it needs to analyze these constraints as parameters. The objective of this paper is to identify these parameters and define quantitative measures for these parameters to compare video datasets for motion tracking.展开更多
This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This pose...This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This poses a challenge since inserting random amount of watermark in all the vertices of the model would generally introduce perceptible distortion. The proposed algorithm overcomes this challenge by using genetic algorithm to modify every vertex location in the model so that there is no perceptible distortion. Various experimental results are used to justify the choice of the genetic algorithm design parameters. Experimental results also indicate that the proposed algorithm can accurately detect location of any mesh modification.展开更多
The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been ex...The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.展开更多
文摘Video tracking is a complex problem because the environment, in which video motion needs to be tracked, is widely varied based on the application and poses several constraints on the design and performance of the tracking system. Current datasets that are used to evaluate and compare video motion tracking algorithms use a cumulative performance measure without thoroughly analyzing the effect of these different constraints imposed by the environment. But it needs to analyze these constraints as parameters. The objective of this paper is to identify these parameters and define quantitative measures for these parameters to compare video datasets for motion tracking.
文摘This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This poses a challenge since inserting random amount of watermark in all the vertices of the model would generally introduce perceptible distortion. The proposed algorithm overcomes this challenge by using genetic algorithm to modify every vertex location in the model so that there is no perceptible distortion. Various experimental results are used to justify the choice of the genetic algorithm design parameters. Experimental results also indicate that the proposed algorithm can accurately detect location of any mesh modification.
文摘The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.