Hydroxyapatite(HA)synthesized by a wet chemical route was subjected to heavy ion irradiation,using4 Me V Krypton ion(Kr17+)with ion fluence ranging from 1×1013 to 1×1015 ions/cm2.Glancing incidence X-ray dif...Hydroxyapatite(HA)synthesized by a wet chemical route was subjected to heavy ion irradiation,using4 Me V Krypton ion(Kr17+)with ion fluence ranging from 1×1013 to 1×1015 ions/cm2.Glancing incidence X-ray diffraction(GIXRD)results confirmed the phase purity of irradiated HA with a moderate contraction in lattice parameters,and further indicated the irradiation-induced structural disorder,evidenced by broadening of the diffraction peaks.High-resolution transmission electron microscopy(HRTEM)observations indicated that the applied Kr irradiation induced significant damage in the hydroxyapatite lattice.Specifically,cavities were observed with their diameter and density varying with the irradiation fluences,while a radiation-induced crystalline-to-amorphous transition with increasing ion dose was identified.Raman and X-ray photoelectron spectroscopy(XPS)analysis further indicated the presence of irradiationinduced defects.Ion release from pristine and irradiated materials following immersion in Tris(p H 7.4,37?)buffer showed that dissolution in vitro was enhanced by irradiation,reaching a peak at 0.1 dpa.We examined the effects of irradiation on the early stages of the mouse osteoblast-like cells(MC3 T3-E)response.A cell counting kit-8 assay(CCK-8 test)was carried out to investigate the cytotoxicity of samples,and viable cells can be observed on the irradiated materials.展开更多
Aicardi-Goutières syndrome (AGS) is a rare inflammatory encephalopathy mimicking in utero acquired viral infection. Cardinal findings comprise leukodystrophy, basal ganglia calcifications and cerebral atrophy alo...Aicardi-Goutières syndrome (AGS) is a rare inflammatory encephalopathy mimicking in utero acquired viral infection. Cardinal findings comprise leukodystrophy, basal ganglia calcifications and cerebral atrophy along with cerebrospinal fluid lymphocytosis and elevated interferon-α. In the majority of cases AGS is inherited as an autosomal recessive trait and caused by mutations in six genes including RNASEH2A, RNASEH2B, RNASEH2C, TREX1, SAMHD1 and ADAR1, all of which encode enzymes acting on nucleic acid species. Most patients present with first neurological signs in early infancy and experience severe global developmental delay. Here, we report on the unusual divergent phenotype of two siblings who both carry the most frequent AGS causing p.A177T (c.529G > A) RNASEH2B mutation in the homozygous state. While one sibling showed a typical AGS presentation with early onset and severe statomotor and mental impairment, the older sibling was intellectually completely normal. She was only diagnosed because of mild spasticity of the legs and serological signs of autoimmunity. These findings highlight the phenotypic variability of AGS and suggest that AGS may be underdiagnosed among children with mild cerebral palsy.展开更多
基金supported by the Science Challenge Project[No:TZ2018004]National Natural Science Foundation of China[Nos.51072159,51273159]+1 种基金Science and technology program of Shaanxi Province[No:2014K10-07]Technology Foundation for Selected Overseas Chinese Scholar,Department of Human Resources and Social Security of Shaanxi Province[No:2014-27].
文摘Hydroxyapatite(HA)synthesized by a wet chemical route was subjected to heavy ion irradiation,using4 Me V Krypton ion(Kr17+)with ion fluence ranging from 1×1013 to 1×1015 ions/cm2.Glancing incidence X-ray diffraction(GIXRD)results confirmed the phase purity of irradiated HA with a moderate contraction in lattice parameters,and further indicated the irradiation-induced structural disorder,evidenced by broadening of the diffraction peaks.High-resolution transmission electron microscopy(HRTEM)observations indicated that the applied Kr irradiation induced significant damage in the hydroxyapatite lattice.Specifically,cavities were observed with their diameter and density varying with the irradiation fluences,while a radiation-induced crystalline-to-amorphous transition with increasing ion dose was identified.Raman and X-ray photoelectron spectroscopy(XPS)analysis further indicated the presence of irradiationinduced defects.Ion release from pristine and irradiated materials following immersion in Tris(p H 7.4,37?)buffer showed that dissolution in vitro was enhanced by irradiation,reaching a peak at 0.1 dpa.We examined the effects of irradiation on the early stages of the mouse osteoblast-like cells(MC3 T3-E)response.A cell counting kit-8 assay(CCK-8 test)was carried out to investigate the cytotoxicity of samples,and viable cells can be observed on the irradiated materials.
基金supported by the Deutsche Forschungsgemeinschaft(VT 421/2-1 to V.T.,LE 1074/4-1 to M.L.-K.)a MeDDrive grant of the Medical Faculty,TU Dresdensupport by the Deutsche Forschungsgemeinschaft and the Open Access Publication Funds of the TU Dresden
文摘Aicardi-Goutières syndrome (AGS) is a rare inflammatory encephalopathy mimicking in utero acquired viral infection. Cardinal findings comprise leukodystrophy, basal ganglia calcifications and cerebral atrophy along with cerebrospinal fluid lymphocytosis and elevated interferon-α. In the majority of cases AGS is inherited as an autosomal recessive trait and caused by mutations in six genes including RNASEH2A, RNASEH2B, RNASEH2C, TREX1, SAMHD1 and ADAR1, all of which encode enzymes acting on nucleic acid species. Most patients present with first neurological signs in early infancy and experience severe global developmental delay. Here, we report on the unusual divergent phenotype of two siblings who both carry the most frequent AGS causing p.A177T (c.529G > A) RNASEH2B mutation in the homozygous state. While one sibling showed a typical AGS presentation with early onset and severe statomotor and mental impairment, the older sibling was intellectually completely normal. She was only diagnosed because of mild spasticity of the legs and serological signs of autoimmunity. These findings highlight the phenotypic variability of AGS and suggest that AGS may be underdiagnosed among children with mild cerebral palsy.