Human Leukocyte Antigens (HLAs) play an important role in host immune responses to infectious pathogens, and influence organ transplantation, cancer and autoimmune diseases. In this study we conducted a high resolutio...Human Leukocyte Antigens (HLAs) play an important role in host immune responses to infectious pathogens, and influence organ transplantation, cancer and autoimmune diseases. In this study we conducted a high resolution, sequence-based genotyping of HLA class I and class II genes of more than 2000 women from Kenya, eastern Tanzania and southern Uganda around Lake Victoria and analyzed their allele, phenotype and haplotype frequencies. A considerable genetic diversity was observed at both class I and II loci. A total of 79 HLA-A, 113 HLA-B, 53 HLA-C, 25 HLA-DPA1, 60 HLA-DPB1, 15 HLA-DQA1, 44 HLA-DQB1 and 38 HLA-DRB1 alleles have been identified. The most common class I alleles were A * 02:01:01 (10.90%), B * 58:02 (8.79%), and C * 06:02:01 (16.98%). The most common class II alleles were DPA1*01:03:01 (40.60%), DPB1 * 01:01:01 (23.45%), DQA1 * 01:02:01 (31.03%), DQB1 * 03:01:01 (21.79%), DRB1 * 11:01:02 (11.65%), DRB3 * 02:02:01 (31.65%), DRB4 * 01:01:01 (10.50%), and DRB5 * 01:01:01 (10.50%). Higher than expected homozygosity was observed at HLA-B (P = 0.022), DQA1 (P = 0.004), DQB1 (P = 0.023), and DRB1 (P = 0.0006) loci. The allele frequency distribution of this population is very similar to the ones observed in other sub-Saharan populations with the exception of lower frequencies of A * 23 (5.55% versus 11.21%) and DQA1 * 03 (4.79% versus 11.72%), and higher frequencies of DPB1 * 30 (2.26% versus 0.37%) and DRB1 * 11 (21.51% versus 15.89%). The knowledge of the diversity and allele/ phenotype frequencies of the HLA alleles of this east African population, can contribute to the understanding of how host genetic factors influence disease susceptibility and effective anti-retroviral treatment of HIV infections and future vaccine trials.展开更多
Objectives: The definition of CD8+ T cell attributes that mediate protective immunity in HIV dis-ease progression has not been clearly defined. Although our ability to characterize these cells continues to improve, th...Objectives: The definition of CD8+ T cell attributes that mediate protective immunity in HIV dis-ease progression has not been clearly defined. Although our ability to characterize these cells continues to improve, the extent to which specific memory phenotypic categories of CD8+ T cells reliably represent their functional attributes remains controversial. Methods: We simultaneously assessed surface phenotype and functionality of HIV-specific CD8+ T cells by multiparametric flow cytometry, measuring five CD8+ T cell functions (CD107a, IFNγ, MIP-1β, TNFα and IL2) and phenotypic markers CCR7, CD45RA, and CD27, in parallel in 24 HIV-infected individuals. Results: Virus-specific responses were contained within all eight phenotypic categories defined using CCR7, CD45RA, and CD27. Phenotypic profiles of HIV-specific cells differed from CEF-specific cells, with HIV-specific cells having higher levels of CD45RA (p = 0.008). Interestingly a large portion of CEF and HIV-specific cells were found within previously undefined phenotypes CCR7+CD27-CD45RA+ (14.6% and 17.2%, respectively) and CCR7+CD27-CD45RA-(14.8% and 15.8%, respectively). In addition, up to 10% - 20% of responding cells were phenotypically “naive”. Additionally, memory phenotypes of cells exhibiting monofunctional and polyfunctional responses frequently differed, and failed to associate with a consistent phenotype representing functionally active cells. Conclusion: These data suggest that particularly after antigen stimulation, that surface phenotypes defined by CCR7, CD27 and CD45RA expression on antigen-specific CD8+ T cells, reflect a wide range of immunological functions, and that no single phenotype defined by memory marker expression can reliably be used to identify functional capacity.展开更多
文摘Human Leukocyte Antigens (HLAs) play an important role in host immune responses to infectious pathogens, and influence organ transplantation, cancer and autoimmune diseases. In this study we conducted a high resolution, sequence-based genotyping of HLA class I and class II genes of more than 2000 women from Kenya, eastern Tanzania and southern Uganda around Lake Victoria and analyzed their allele, phenotype and haplotype frequencies. A considerable genetic diversity was observed at both class I and II loci. A total of 79 HLA-A, 113 HLA-B, 53 HLA-C, 25 HLA-DPA1, 60 HLA-DPB1, 15 HLA-DQA1, 44 HLA-DQB1 and 38 HLA-DRB1 alleles have been identified. The most common class I alleles were A * 02:01:01 (10.90%), B * 58:02 (8.79%), and C * 06:02:01 (16.98%). The most common class II alleles were DPA1*01:03:01 (40.60%), DPB1 * 01:01:01 (23.45%), DQA1 * 01:02:01 (31.03%), DQB1 * 03:01:01 (21.79%), DRB1 * 11:01:02 (11.65%), DRB3 * 02:02:01 (31.65%), DRB4 * 01:01:01 (10.50%), and DRB5 * 01:01:01 (10.50%). Higher than expected homozygosity was observed at HLA-B (P = 0.022), DQA1 (P = 0.004), DQB1 (P = 0.023), and DRB1 (P = 0.0006) loci. The allele frequency distribution of this population is very similar to the ones observed in other sub-Saharan populations with the exception of lower frequencies of A * 23 (5.55% versus 11.21%) and DQA1 * 03 (4.79% versus 11.72%), and higher frequencies of DPB1 * 30 (2.26% versus 0.37%) and DRB1 * 11 (21.51% versus 15.89%). The knowledge of the diversity and allele/ phenotype frequencies of the HLA alleles of this east African population, can contribute to the understanding of how host genetic factors influence disease susceptibility and effective anti-retroviral treatment of HIV infections and future vaccine trials.
文摘Objectives: The definition of CD8+ T cell attributes that mediate protective immunity in HIV dis-ease progression has not been clearly defined. Although our ability to characterize these cells continues to improve, the extent to which specific memory phenotypic categories of CD8+ T cells reliably represent their functional attributes remains controversial. Methods: We simultaneously assessed surface phenotype and functionality of HIV-specific CD8+ T cells by multiparametric flow cytometry, measuring five CD8+ T cell functions (CD107a, IFNγ, MIP-1β, TNFα and IL2) and phenotypic markers CCR7, CD45RA, and CD27, in parallel in 24 HIV-infected individuals. Results: Virus-specific responses were contained within all eight phenotypic categories defined using CCR7, CD45RA, and CD27. Phenotypic profiles of HIV-specific cells differed from CEF-specific cells, with HIV-specific cells having higher levels of CD45RA (p = 0.008). Interestingly a large portion of CEF and HIV-specific cells were found within previously undefined phenotypes CCR7+CD27-CD45RA+ (14.6% and 17.2%, respectively) and CCR7+CD27-CD45RA-(14.8% and 15.8%, respectively). In addition, up to 10% - 20% of responding cells were phenotypically “naive”. Additionally, memory phenotypes of cells exhibiting monofunctional and polyfunctional responses frequently differed, and failed to associate with a consistent phenotype representing functionally active cells. Conclusion: These data suggest that particularly after antigen stimulation, that surface phenotypes defined by CCR7, CD27 and CD45RA expression on antigen-specific CD8+ T cells, reflect a wide range of immunological functions, and that no single phenotype defined by memory marker expression can reliably be used to identify functional capacity.