Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process.An ov...Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process.An overview is given here of optical diagnostics for density measurement in laser-plasma acceleration stages,with emphasis on wellestablished and easily implemented approaches.Diagnostics for both neutral gas and free-electron number density are considered,highlighting real-time measurement capabilities.Optical interferometry,in its various configurations,from standard two-arm to more advanced common-path designs,is discussed,along with spectroscopic techniques such as Stark broadening and Raman scattering.A critical analysis of the diagnostics presented is given concerning their implementation in laser-plasma acceleration stages for the production of high-quality GeV electron bunches.展开更多
We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory(ILIL) including laser, beam transport and target area specifications. The laboratory was de...We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory(ILIL) including laser, beam transport and target area specifications. The laboratory was designed to host laser–target interaction experiments of more than 220 TW peak power, in flexible focusing configurations, with ultrarelativistic intensity on the target. Specifications have been established via dedicated optical diagnostic assemblies and commissioning interaction experiments. In this paper we give a summary of laser specifications available to users,including spatial, spectral and temporal contrast features. The layout of the experimental target areas is presented, with attention to the available configurations of laser focusing geometries and diagnostics. Finally, we discuss radiation protection measures and mechanical stability of the laser focal spot on the target.展开更多
We report the characterization of the pump absorption and emission dynamic properties of a Tm:Lu2O3 ceramic lasing medium using a three-mirror folded laser cavity.We measured a slope efficiency of 73%,which allowed us...We report the characterization of the pump absorption and emission dynamic properties of a Tm:Lu2O3 ceramic lasing medium using a three-mirror folded laser cavity.We measured a slope efficiency of 73%,which allowed us to retrieve the cross-relaxation coefficient.The behavior of our system was modeled via a set of macroscopic rate equations in both the quasi continuous wave and the pulsed pumping regime.Numerical solutions were obtained,showing a good agreement with the experimental findings.The numerical solution also yielded a cross-relaxation coefficient in very good agreement with the measured one,showing that the cross-relaxation phenomenon approaches the maximum theoretical efficiency.展开更多
基金support from the European Unions Horizon 2020 research and innovation program under Grant Agreement No.653782-EuPRAXIAthe MIUR-funded Italian research Network ELI-Italy
文摘Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process.An overview is given here of optical diagnostics for density measurement in laser-plasma acceleration stages,with emphasis on wellestablished and easily implemented approaches.Diagnostics for both neutral gas and free-electron number density are considered,highlighting real-time measurement capabilities.Optical interferometry,in its various configurations,from standard two-arm to more advanced common-path designs,is discussed,along with spectroscopic techniques such as Stark broadening and Raman scattering.A critical analysis of the diagnostics presented is given concerning their implementation in laser-plasma acceleration stages for the production of high-quality GeV electron bunches.
基金The ILIL-PW upgrade was established in the framework of the Italian Research Network on Extreme Light Infrastructure(ELI-Italy)funded by CNRfinancial contribution from the Eu PRAXIA project of the EU Horizon 2020 Research and Innovation Program under Grant Agreement No.653782the Line for Laser Light Ion Acceleration(L3IA)project funded by INFN,Italy。
文摘We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory(ILIL) including laser, beam transport and target area specifications. The laboratory was designed to host laser–target interaction experiments of more than 220 TW peak power, in flexible focusing configurations, with ultrarelativistic intensity on the target. Specifications have been established via dedicated optical diagnostic assemblies and commissioning interaction experiments. In this paper we give a summary of laser specifications available to users,including spatial, spectral and temporal contrast features. The layout of the experimental target areas is presented, with attention to the available configurations of laser focusing geometries and diagnostics. Finally, we discuss radiation protection measures and mechanical stability of the laser focal spot on the target.
基金EU Horizon 2020 Research and Innovation Program EuPRAXIA Preparatory Phase,under Grant Agreement No.101079773,EU Horizon IFAST,under Grant Agreement No.101004730This research has been co-funded by the European Union-NextGeneration EU‘Integrated infrastructure initiative in Photonic and Quantum Sciences’-I-PHOQS(IR0000016,ID D2B8D520,CUP B53C22001750006)+1 种基金‘EuPRAXIA Advanced Photon Sources’-EuAPS(IR0000030,CUP I93C21000160006)the Project‘Tuscany Health Ecosystem-THE’‘Spoke 1-Advanced Radiotherapies and Diagnostics in Oncology’funded by the NextGenerationEU(PNRR),Codice progetto ECS00000017,D.D.MUR No.105523 May 2022.
文摘We report the characterization of the pump absorption and emission dynamic properties of a Tm:Lu2O3 ceramic lasing medium using a three-mirror folded laser cavity.We measured a slope efficiency of 73%,which allowed us to retrieve the cross-relaxation coefficient.The behavior of our system was modeled via a set of macroscopic rate equations in both the quasi continuous wave and the pulsed pumping regime.Numerical solutions were obtained,showing a good agreement with the experimental findings.The numerical solution also yielded a cross-relaxation coefficient in very good agreement with the measured one,showing that the cross-relaxation phenomenon approaches the maximum theoretical efficiency.