The detection of the pharmaceutical compounds used in human and veterinary medicine is in several environmental matrices (surface waters, effluents, groundwater, soils, and sediments), and such presence promotes the r...The detection of the pharmaceutical compounds used in human and veterinary medicine is in several environmental matrices (surface waters, effluents, groundwater, soils, and sediments), and such presence promotes the resistance bacteria development, making them ineffective in some diseases treatment. The research project promotes the TiO<sub>2</sub> synthesis using yeast culture as biotemplate, the step followed by the microstructure characterization with surface area enhancement;such properties are responsible for the improvement of solar photodecomposition processes of the veterinary antibiotic oxytetracycline. In such simple and standard process conditions the system reaches about 84% of removal percentage with a better agreement with the pseudo-first-order with the Pearson coefficient in the range from 0.82 to 0.94 and <em>K</em><sub>1</sub> = 0.035 M<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>s<span style="white-space:nowrap;"><span style="font-size:10px;"><sup>−<span style="white-space:normal;">1</span></sup></span></span>. The degradation rate constant increased with the increasing initial Yeast-TiO<sub>2</sub> dosage until the maximum mass of 0.1 g or with the decreasing of initial oxytetracycline concentration. The solar light used as a sustainable irradiation source is abundant and low cost in tropical countries, perfect to be applied in water treatment to decompose the pharmaceuticals pollutants, as the veterinarian antibiotics. The study demonstrates that solar photodecomposition is an efficient treatment technology for the removal of antibiotics from polluted water and provides insightful information on the potential practical application of this technology to treat contaminated water, possibly also in rural, distant areas.展开更多
Reliable data of antibiotic use and environmental discharge as veterinary medicine are essential to help countries raise awareness of the appropriate use, control, and correct water release. The first approach is to c...Reliable data of antibiotic use and environmental discharge as veterinary medicine are essential to help countries raise awareness of the appropriate use, control, and correct water release. The first approach is to change the regulatory framework based on consuming information, use policy, and discharge laws. The important research contribution is a novel water treatment process to treat, remove, and reduce antibiotic concentration in discharged water, mainly those used in the animal protein industry. The low particle biochar added during the titanium isopropoxide hydrolysis reduces the titanium dioxide (TiO<sub><span style="vertical-align:sub;">2</span></sub><span>) agglomerates and promotes the adsorption surface process. Such improved catalyst material enhances the solar decomposition efficiency to 93% from original oxytetracycline with better correspondence with the Elovich kinetics, intraparticle diffusion, R-P isotherm, and Langmuir-Hinshelwood model.</span>展开更多
文摘The detection of the pharmaceutical compounds used in human and veterinary medicine is in several environmental matrices (surface waters, effluents, groundwater, soils, and sediments), and such presence promotes the resistance bacteria development, making them ineffective in some diseases treatment. The research project promotes the TiO<sub>2</sub> synthesis using yeast culture as biotemplate, the step followed by the microstructure characterization with surface area enhancement;such properties are responsible for the improvement of solar photodecomposition processes of the veterinary antibiotic oxytetracycline. In such simple and standard process conditions the system reaches about 84% of removal percentage with a better agreement with the pseudo-first-order with the Pearson coefficient in the range from 0.82 to 0.94 and <em>K</em><sub>1</sub> = 0.035 M<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>s<span style="white-space:nowrap;"><span style="font-size:10px;"><sup>−<span style="white-space:normal;">1</span></sup></span></span>. The degradation rate constant increased with the increasing initial Yeast-TiO<sub>2</sub> dosage until the maximum mass of 0.1 g or with the decreasing of initial oxytetracycline concentration. The solar light used as a sustainable irradiation source is abundant and low cost in tropical countries, perfect to be applied in water treatment to decompose the pharmaceuticals pollutants, as the veterinarian antibiotics. The study demonstrates that solar photodecomposition is an efficient treatment technology for the removal of antibiotics from polluted water and provides insightful information on the potential practical application of this technology to treat contaminated water, possibly also in rural, distant areas.
文摘Reliable data of antibiotic use and environmental discharge as veterinary medicine are essential to help countries raise awareness of the appropriate use, control, and correct water release. The first approach is to change the regulatory framework based on consuming information, use policy, and discharge laws. The important research contribution is a novel water treatment process to treat, remove, and reduce antibiotic concentration in discharged water, mainly those used in the animal protein industry. The low particle biochar added during the titanium isopropoxide hydrolysis reduces the titanium dioxide (TiO<sub><span style="vertical-align:sub;">2</span></sub><span>) agglomerates and promotes the adsorption surface process. Such improved catalyst material enhances the solar decomposition efficiency to 93% from original oxytetracycline with better correspondence with the Elovich kinetics, intraparticle diffusion, R-P isotherm, and Langmuir-Hinshelwood model.</span>