Photothermal therapy(PTT)using near-infrared(NIR)light for tumor treatment has triggered extensive attentions because of its advantages of noninvasion and convenience.The current research on PTT usually uses lasers in...Photothermal therapy(PTT)using near-infrared(NIR)light for tumor treatment has triggered extensive attentions because of its advantages of noninvasion and convenience.The current research on PTT usually uses lasers in the first NIR window(NIR-I;700–900 nm)as irradiation source.However,the second NIR window(NIR-II;1000–1700 nm)especially NIRIIa window(1300–1400 nm)is considered much more promising in diagnosis and treatment as its superiority in penetration depth and maximum permissible exposure over NIR-I window.Hereby,we propose the use of laser excitation at 1275 nm,which is approved by Food and Drug Administration for physical therapy,as an attractive technique for PTT to balance of tissue absorption and scattering with water absorption.Specifically,CuS-PEG nanoparticles with similar absorption values at 1275 and 808 nm,a conventional NIR-I window for PTT,were synthesized as PTT agents and a comparison platform,to explore the potential of 1275 and 808 nm lasers for PTT,especially in deep-tissue settings.The results showed that 1275 nm laser was practicable in PTT.It exhibited much more desirable outcomes in cell ablation in vitro and deep-tissue antitumor capabilities in vivo compared to that of 808 nm laser.NIR-IIa laser illumination is superior to NIR-I laser for deep-tissue PTT,and shows high potential to improve the PTT outcome.展开更多
Mg(OH)_(2)/graphene oxide(GO)composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential.The characteristics of the Mg(OH)_(2)/GO composite film were investigated by scanning electron ...Mg(OH)_(2)/graphene oxide(GO)composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential.The characteristics of the Mg(OH)_(2)/GO composite film were investigated by scanning electron microscope(SEM),energy-dispersive X-ray spectrometry(EDS),X-ray diffractometer(XRD)and Raman spectroscopy.It was shown that the flaky GO randomly distributed in the composite film.Compared with the Mg(OH)_(2)film,the Mg(OH)_(2)/GO composite film exhibited more uniform and compact structure.Potentiodynamic polarization tests revealed that the Mg(OH)_(2)/GO composite film could significantly improve the corrosion resistance of Mg(OH)_(2)film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.展开更多
The oxygen evolution reaction(OER) is a key step in the overall water splitting process. Numerous electrocatalysts have been developed to lower the overpotential and accelerate the kinetics of the OER. In this work,...The oxygen evolution reaction(OER) is a key step in the overall water splitting process. Numerous electrocatalysts have been developed to lower the overpotential and accelerate the kinetics of the OER. In this work, a simple soaking and heating treatment was used to form a stable and efficient FeNiO/CP electrode. The electrode combined nickel and iron oxides on a commercial carbon paper were used for electrocatalytic water oxidation. The best FeNiO/CP electrode(Ni/Fe = 15/1) displayed a current density of 10 mA/cmat a low overpotential of 290 mV in 0.1 M KOH solution with a Tafel slope of 52 mV/dec.A higher current density of0 mA/cmat the same overpotential and a lower Tafel slope of 43 mV/dec was obtained for this electrode in 1.0 M KOH solution. Excellent durability of the FeNiO/CP electrode in 1.0 M KOH solution was confirmed under a high current density of 136 mA/cmat an overpotential of 340 mV.展开更多
Malacostracan crustaceans(order Malacostraca),such as crabs,lobsters,and shrimp,are essential secondary producers,as well as major carriers of viruses,in marine ecosystems and are widely distributed from the intertida...Malacostracan crustaceans(order Malacostraca),such as crabs,lobsters,and shrimp,are essential secondary producers,as well as major carriers of viruses,in marine ecosystems and are widely distributed from the intertidal belt to the deep seabed,functioning as ideal models for studies of virus transmission between marine layers.They are of great economic significance since they are important food sources.However,it is also necessary to enrich our understanding of the presence of viruses,such as white spot syndrome virus[1],that are likely to develop into a definite risk.To date,the virome structure of malacostracan crustaceans has not yet been uncovered in toto,let alone the ecological significance and adaptability of viruses at different depths in the ocean.展开更多
Consumption of arsenic contaminated water and cereals is a serious threat to humans all over the world. Rice (Oryza sativa "Nipponbare"), as a main cereal crop, can accumulate arsenic more than 10-fold that of in ...Consumption of arsenic contaminated water and cereals is a serious threat to humans all over the world. Rice (Oryza sativa "Nipponbare"), as a main cereal crop, can accumulate arsenic more than 10-fold that of in other cereals. To gain a comprehensive understanding of the response of rice subjected to 100 μM arsenate stress, a comparative proteomic analysis of rice shoots in combination with morphological and biochemical investigations have been performed in this study. The results demonstrated that arsenate suppressed the growth of rice seedlings, destroyed the cellular ultra-structure and changed the homeostasis of reactive oxygen species. Moreover, a total of 38 differentially displayed proteins, which were mainly involved in metabolism, redox and protein-metabolism, were identified. The data suggest the arsenic can inhibit rice growth through negatively affecting chloroplast structure and photosynthesis. In addition, upregulation of the proteins involved in redox and protein metabolism might help the rice to be resistant or tolerant to arsenic toxicity. In general, this study improves our understanding about the rice arsenic responsive mechanism.展开更多
Plasmonic catalysis is emerging as a dynamic field in heterogeneous catalysis and holds great promise for the efficient utilization of solar energy.Central to the development of plasmonic catalysis is the design of ef...Plasmonic catalysis is emerging as a dynamic field in heterogeneous catalysis and holds great promise for the efficient utilization of solar energy.Central to the development of plasmonic catalysis is the design of efficient plasmonic nanocatalysts.In this report,plasmonic gap nanostructures(PGNs)on the basis of Au@poly(o-phenylenediamine)(POPD)@Pd sandwich nanostructures are synthesized as plasmonic nanocatalysts by an in-situ reduction synthetic strategy,which allows for the precise engineering of the POPD gap size between plasmonic Au and catalytic Pd components.The introduction of conducting POPD nanogap in PGNs not only effectively enhances their light harvesting capability,but also provides an effective charge transfer channel for harnessing the photogenerated hot charge carriers.In this respect,distinct gap-dependent performances in plasmon-enhanced electrocatalysis of ethanol oxidation reactions(EOR)are demonstrated with the PGN nanocatalysts and over 2.5 folds of enhancement can be achieved.A volcano plot is derived to describe the relationship between the catalytic activities and gap size of the PGN nanocatalysts,which is well explained by the interplay of their light harvesting and charge transport capabilities.These results highlight the importance of gap engineering in PGNs for plasmonic catalysis and offer the promise of developing efficient plasmonic nanocatalysts for other heterogeneous catalytic reactions.展开更多
基金supported,in part,by the Natural Science Foundation of China (Nos.81402043 and 81201141)the Clinical Capability Construction Project for Liaoning Provincial Hospitals (LNCCC-D50-2015+1 种基金LNCCC-C09-2015)the China postdoctoral science foundation Grant (2016T90233)
文摘Photothermal therapy(PTT)using near-infrared(NIR)light for tumor treatment has triggered extensive attentions because of its advantages of noninvasion and convenience.The current research on PTT usually uses lasers in the first NIR window(NIR-I;700–900 nm)as irradiation source.However,the second NIR window(NIR-II;1000–1700 nm)especially NIRIIa window(1300–1400 nm)is considered much more promising in diagnosis and treatment as its superiority in penetration depth and maximum permissible exposure over NIR-I window.Hereby,we propose the use of laser excitation at 1275 nm,which is approved by Food and Drug Administration for physical therapy,as an attractive technique for PTT to balance of tissue absorption and scattering with water absorption.Specifically,CuS-PEG nanoparticles with similar absorption values at 1275 and 808 nm,a conventional NIR-I window for PTT,were synthesized as PTT agents and a comparison platform,to explore the potential of 1275 and 808 nm lasers for PTT,especially in deep-tissue settings.The results showed that 1275 nm laser was practicable in PTT.It exhibited much more desirable outcomes in cell ablation in vitro and deep-tissue antitumor capabilities in vivo compared to that of 808 nm laser.NIR-IIa laser illumination is superior to NIR-I laser for deep-tissue PTT,and shows high potential to improve the PTT outcome.
基金The financial support from the“Hundred Talents Program”of Chinese Academy of Sciences(J.Liang)is gratefully acknowledged.
文摘Mg(OH)_(2)/graphene oxide(GO)composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential.The characteristics of the Mg(OH)_(2)/GO composite film were investigated by scanning electron microscope(SEM),energy-dispersive X-ray spectrometry(EDS),X-ray diffractometer(XRD)and Raman spectroscopy.It was shown that the flaky GO randomly distributed in the composite film.Compared with the Mg(OH)_(2)film,the Mg(OH)_(2)/GO composite film exhibited more uniform and compact structure.Potentiodynamic polarization tests revealed that the Mg(OH)_(2)/GO composite film could significantly improve the corrosion resistance of Mg(OH)_(2)film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.
基金supported by the National Basic Research Program of China(973 program,2014CB239402)the National Natural Science Foundation of China(21120102036,91233201 and 21573033)+1 种基金the Fundamental Research Funds for the Central Universities(DUT15LK08)the Basic Research Project of Key Laboratory of Liaoning(LZ2015015)
文摘The oxygen evolution reaction(OER) is a key step in the overall water splitting process. Numerous electrocatalysts have been developed to lower the overpotential and accelerate the kinetics of the OER. In this work, a simple soaking and heating treatment was used to form a stable and efficient FeNiO/CP electrode. The electrode combined nickel and iron oxides on a commercial carbon paper were used for electrocatalytic water oxidation. The best FeNiO/CP electrode(Ni/Fe = 15/1) displayed a current density of 10 mA/cmat a low overpotential of 290 mV in 0.1 M KOH solution with a Tafel slope of 52 mV/dec.A higher current density of0 mA/cmat the same overpotential and a lower Tafel slope of 43 mV/dec was obtained for this electrode in 1.0 M KOH solution. Excellent durability of the FeNiO/CP electrode in 1.0 M KOH solution was confirmed under a high current density of 136 mA/cmat an overpotential of 340 mV.
基金supported by the National Natural Science Foundation of China(31970176)the Collaborative Research Grant KLMVI-OP-202002 of CAS Key Laboratory of Molecular Virology&Immunology,Institut Pasteur of Shanghai,Chinese Academy of Sciences+1 种基金Guangdong Provincial Key Laboratory of Fishery Ecology and Environment(FEEL2019)the CAS Pioneer Hundred Talents Program。
文摘Malacostracan crustaceans(order Malacostraca),such as crabs,lobsters,and shrimp,are essential secondary producers,as well as major carriers of viruses,in marine ecosystems and are widely distributed from the intertidal belt to the deep seabed,functioning as ideal models for studies of virus transmission between marine layers.They are of great economic significance since they are important food sources.However,it is also necessary to enrich our understanding of the presence of viruses,such as white spot syndrome virus[1],that are likely to develop into a definite risk.To date,the virome structure of malacostracan crustaceans has not yet been uncovered in toto,let alone the ecological significance and adaptability of viruses at different depths in the ocean.
基金supported by the 100 Talents Program of the Chinese Academy of Sciences
文摘Consumption of arsenic contaminated water and cereals is a serious threat to humans all over the world. Rice (Oryza sativa "Nipponbare"), as a main cereal crop, can accumulate arsenic more than 10-fold that of in other cereals. To gain a comprehensive understanding of the response of rice subjected to 100 μM arsenate stress, a comparative proteomic analysis of rice shoots in combination with morphological and biochemical investigations have been performed in this study. The results demonstrated that arsenate suppressed the growth of rice seedlings, destroyed the cellular ultra-structure and changed the homeostasis of reactive oxygen species. Moreover, a total of 38 differentially displayed proteins, which were mainly involved in metabolism, redox and protein-metabolism, were identified. The data suggest the arsenic can inhibit rice growth through negatively affecting chloroplast structure and photosynthesis. In addition, upregulation of the proteins involved in redox and protein metabolism might help the rice to be resistant or tolerant to arsenic toxicity. In general, this study improves our understanding about the rice arsenic responsive mechanism.
基金his work was supported by the National Natural Science Foundation of China(Nos.21974131,22072144,and 22102171)the Department of Science and Technology of Jilin Province(No.20200201080JC)the Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS341).
文摘Plasmonic catalysis is emerging as a dynamic field in heterogeneous catalysis and holds great promise for the efficient utilization of solar energy.Central to the development of plasmonic catalysis is the design of efficient plasmonic nanocatalysts.In this report,plasmonic gap nanostructures(PGNs)on the basis of Au@poly(o-phenylenediamine)(POPD)@Pd sandwich nanostructures are synthesized as plasmonic nanocatalysts by an in-situ reduction synthetic strategy,which allows for the precise engineering of the POPD gap size between plasmonic Au and catalytic Pd components.The introduction of conducting POPD nanogap in PGNs not only effectively enhances their light harvesting capability,but also provides an effective charge transfer channel for harnessing the photogenerated hot charge carriers.In this respect,distinct gap-dependent performances in plasmon-enhanced electrocatalysis of ethanol oxidation reactions(EOR)are demonstrated with the PGN nanocatalysts and over 2.5 folds of enhancement can be achieved.A volcano plot is derived to describe the relationship between the catalytic activities and gap size of the PGN nanocatalysts,which is well explained by the interplay of their light harvesting and charge transport capabilities.These results highlight the importance of gap engineering in PGNs for plasmonic catalysis and offer the promise of developing efficient plasmonic nanocatalysts for other heterogeneous catalytic reactions.