With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our resu...With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.展开更多
Coastal ecosystems are plagued by high levels of microplastic pollution.Conducting baseline surveys is crucial to comprehend the distribution and influencing factors of this pollution.The present study investigates th...Coastal ecosystems are plagued by high levels of microplastic pollution.Conducting baseline surveys is crucial to comprehend the distribution and influencing factors of this pollution.The present study investigates the spatiotemporal variation and diversity of microplastic on the coastal beaches in Xiamen City,China,considering the combined effects of seasons,human activities,and physicochemical properties of sediments.It is detected that the abundance of microplastics in Xiamen beaches was 0.271±0.01 items/g.The abundance of microplastics in dry season was significantly higher than in rainy season.In terms of spatial variation,the beaches that attracted a larger number of tourists exhibited significantly higher microplastic abundance.The temporal pattern of microplastic distribution on different beaches varied greatly due to region-specific human activities(e.g.,mangrove restoration project)and sedimentary properties(e.g.,bulk density).When the assemblage of microplastics in the coastal area was viewed as a biological community,the Shannon-Wiener index and Pielou's index were higher in rainy season and in the beaches with high intensity of tourist activities,which suggests that the human activities and the surface runoff may contribute to the diversity of microplastics on coastal beaches.Future investigations are encouraged to combine controlled experiments and long-term monitoring at multiple scales to elucidate the underlying mechanisms and factors associated with microplastic pollution in coastal zone.展开更多
The evolution of the shoals and vegetation plays an important role in maintaining the stability of the river regime and the estuarine ecosystem. However, the interaction between the evolution of shoals and vegetation ...The evolution of the shoals and vegetation plays an important role in maintaining the stability of the river regime and the estuarine ecosystem. However, the interaction between the evolution of shoals and vegetation dynamic has rarely been reported. In this study, we determined the interaction between the shoal and vegetation evolution of Jiuduansha in the Changjiang River Estuary in the last 30 years. We did this through the collection and summarization of the existing data of the regional hydrological processes, wading engineering, and vegetation,and combined it with the analysis of nautical charts and remote sensing images. During the past 30 years, the expansion of the shoals within the 0 m isobath in Jiuduansha was obvious, with an increase of 176.5%, while the expansion of the shoals within the 5 m isobath was relatively slow. The regional hydrological characteristics in the Jiuduansha area changed dramatically, especially the sediment discharges. The area of vegetation in Jiuduansha increased from 9.1 km^2 in 1990 to 65.68 km^2 in 2015, while the variations in the different vegetation types were different. The best combination of environmental factors with a significant correlation on the shoals within the 0 m isobath is the area of Spartina alterniflora and Phragmites australis. The evolution of Jiuduansha shoals was significantly affected by the variations in hydrological characteristics. Meanwhile, on a long-term scale, the expansion of the shoals could promote the regional vegetation expansions due to the suitable elevation and environmental conditions it provides. The interaction between the shoal and vegetation evolution varied in the different vegetation types and different elevations. In the future, long-term monitoring and detailed data are needed to the systematical analysis of the interaction between the hydrological processes and the evolution of the shoal and vegetation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 12074329)Nanhu Scholars Program for Young Scholars of Xinyang Normal University。
文摘With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.
基金Supported by the Natural Science Foundation of Fujian Province(No.2022J05278)the Marine and Fishery Development Special Fund of Xiamen(No.23YYST064QCB36)。
文摘Coastal ecosystems are plagued by high levels of microplastic pollution.Conducting baseline surveys is crucial to comprehend the distribution and influencing factors of this pollution.The present study investigates the spatiotemporal variation and diversity of microplastic on the coastal beaches in Xiamen City,China,considering the combined effects of seasons,human activities,and physicochemical properties of sediments.It is detected that the abundance of microplastics in Xiamen beaches was 0.271±0.01 items/g.The abundance of microplastics in dry season was significantly higher than in rainy season.In terms of spatial variation,the beaches that attracted a larger number of tourists exhibited significantly higher microplastic abundance.The temporal pattern of microplastic distribution on different beaches varied greatly due to region-specific human activities(e.g.,mangrove restoration project)and sedimentary properties(e.g.,bulk density).When the assemblage of microplastics in the coastal area was viewed as a biological community,the Shannon-Wiener index and Pielou's index were higher in rainy season and in the beaches with high intensity of tourist activities,which suggests that the human activities and the surface runoff may contribute to the diversity of microplastics on coastal beaches.Future investigations are encouraged to combine controlled experiments and long-term monitoring at multiple scales to elucidate the underlying mechanisms and factors associated with microplastic pollution in coastal zone.
基金The funds from the Shanghai Science and Technology Committee under contract No.19DZ1203801the National Natural Science Foundation of China under contract No.41761144062。
文摘The evolution of the shoals and vegetation plays an important role in maintaining the stability of the river regime and the estuarine ecosystem. However, the interaction between the evolution of shoals and vegetation dynamic has rarely been reported. In this study, we determined the interaction between the shoal and vegetation evolution of Jiuduansha in the Changjiang River Estuary in the last 30 years. We did this through the collection and summarization of the existing data of the regional hydrological processes, wading engineering, and vegetation,and combined it with the analysis of nautical charts and remote sensing images. During the past 30 years, the expansion of the shoals within the 0 m isobath in Jiuduansha was obvious, with an increase of 176.5%, while the expansion of the shoals within the 5 m isobath was relatively slow. The regional hydrological characteristics in the Jiuduansha area changed dramatically, especially the sediment discharges. The area of vegetation in Jiuduansha increased from 9.1 km^2 in 1990 to 65.68 km^2 in 2015, while the variations in the different vegetation types were different. The best combination of environmental factors with a significant correlation on the shoals within the 0 m isobath is the area of Spartina alterniflora and Phragmites australis. The evolution of Jiuduansha shoals was significantly affected by the variations in hydrological characteristics. Meanwhile, on a long-term scale, the expansion of the shoals could promote the regional vegetation expansions due to the suitable elevation and environmental conditions it provides. The interaction between the shoal and vegetation evolution varied in the different vegetation types and different elevations. In the future, long-term monitoring and detailed data are needed to the systematical analysis of the interaction between the hydrological processes and the evolution of the shoal and vegetation.