In the sentence beginning'and more irreversible hydrogentrapping sites….'in this article,the value'0.38×1025 cm-3'should have read'0.68×1020 cm-3'.These corrections do not alter the ...In the sentence beginning'and more irreversible hydrogentrapping sites….'in this article,the value'0.38×1025 cm-3'should have read'0.68×1020 cm-3'.These corrections do not alter the primary conclusion that the irreversible hydrogen trap density in 42CrNiMoV steel is nearly twice that of 40CrNiMo steel.展开更多
Hydrogen embrittlement(HE)remains a critical challenge for high-strength steels.This study comparatively investigates the HE behavior and hydrogen diffusion characteristics of a vanadium-micro-alloyed 42CrNiMoV steel ...Hydrogen embrittlement(HE)remains a critical challenge for high-strength steels.This study comparatively investigates the HE behavior and hydrogen diffusion characteristics of a vanadium-micro-alloyed 42CrNiMoV steel against conventional 40CrNiMo steel through slow strain rate testing(SSRT),hydrogen thermal desorption,and hydrogen permeation measurements.The 42CrNiMoV steel demonstrated better mechanical properties and improved HE resistance under SSRT with both hydrogen pre-charged and in situ charging conditions.Microstructural analysis revealed that vanadium micro-alloying leads to grain refinement and reduces hydrogen diffusivity through vanadium carbides.Fractographic investigations revealed the environment-dependent fracture mechanisms,transitioning from ductile-to brittle-dominated failure modes under different hydrogen-charging conditions.These findings validate that vanadium micro-alloying represents a promising,cost-effective strategy for developing hydrogen-resistant high-strength steels,while emphasizing the crucial need for rigorous hydrogen ingress control in practical applications.展开更多
文摘In the sentence beginning'and more irreversible hydrogentrapping sites….'in this article,the value'0.38×1025 cm-3'should have read'0.68×1020 cm-3'.These corrections do not alter the primary conclusion that the irreversible hydrogen trap density in 42CrNiMoV steel is nearly twice that of 40CrNiMo steel.
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1421700).
文摘Hydrogen embrittlement(HE)remains a critical challenge for high-strength steels.This study comparatively investigates the HE behavior and hydrogen diffusion characteristics of a vanadium-micro-alloyed 42CrNiMoV steel against conventional 40CrNiMo steel through slow strain rate testing(SSRT),hydrogen thermal desorption,and hydrogen permeation measurements.The 42CrNiMoV steel demonstrated better mechanical properties and improved HE resistance under SSRT with both hydrogen pre-charged and in situ charging conditions.Microstructural analysis revealed that vanadium micro-alloying leads to grain refinement and reduces hydrogen diffusivity through vanadium carbides.Fractographic investigations revealed the environment-dependent fracture mechanisms,transitioning from ductile-to brittle-dominated failure modes under different hydrogen-charging conditions.These findings validate that vanadium micro-alloying represents a promising,cost-effective strategy for developing hydrogen-resistant high-strength steels,while emphasizing the crucial need for rigorous hydrogen ingress control in practical applications.