期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MACLSTM: A Weather Attributes Enabled Recurrent Approach to Appliance-Level Energy Consumption Forecasting
1
作者 Ruoxin Li Shaoxiong Wu +5 位作者 fengping deng Zhongli Tian Hua Cai Xiang Li Xu Xu Qi Liu 《Computers, Materials & Continua》 2025年第2期2969-2984,共16页
Studies to enhance the management of electrical energy have gained considerable momentum in recent years. The question of how much energy will be needed in households is a pressing issue as it allows the management pl... Studies to enhance the management of electrical energy have gained considerable momentum in recent years. The question of how much energy will be needed in households is a pressing issue as it allows the management plan of the available resources at the power grids and consumer levels. A non-intrusive inference process can be adopted to predict the amount of energy required by appliances. In this study, an inference process of appliance consumption based on temporal and environmental factors used as a soft sensor is proposed. First, a study of the correlation between the electrical and environmental variables is presented. Then, a resampling process is applied to the initial data set to generate three other subsets of data. All the subsets were evaluated to deduce the adequate granularity for the prediction of the energy demand. Then, a cloud-assisted deep neural network model is designed to forecast short-term energy consumption in a residential area while preserving user privacy. The solution is applied to the consumption data of four appliances elected from a set of real household power data. The experiment results show that the proposed framework is effective for estimating consumption with convincing accuracy. 展开更多
关键词 Electrical load forecasting cloud computing smart grid weather attributes energy consumption time-series analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部