Vicinal diamines are key motifs widely-found in many pharmaceuticals and biologically active molecules.An appealing approach for synthesizing these molecules is the amination of enamines,but few examples have been exp...Vicinal diamines are key motifs widely-found in many pharmaceuticals and biologically active molecules.An appealing approach for synthesizing these molecules is the amination of enamines,but few examples have been explored.With the utilization of nitrogen-centered radicals(NCRs),here we present the development of a dual bio-/photo-catalytic system for achieving enantioselective hydroamination of enamides,which can give easy access to diverse enantioenriched vicinal diamines.These reactions progress efficiently under green light excitation and exhibit excellent enantioselectivities(up to>99%enantiomeric excess).Mechanistic studies uncovered the synergistic effect of the enzyme and the externally added organophotoredox catalyst Rhodamine B(RhB).This work demonstrates the effectiveness of photobiocatalysis to generate and control high-energy radical intermediates,addressing a long-standing challenge in chemical synthesis.展开更多
文摘Vicinal diamines are key motifs widely-found in many pharmaceuticals and biologically active molecules.An appealing approach for synthesizing these molecules is the amination of enamines,but few examples have been explored.With the utilization of nitrogen-centered radicals(NCRs),here we present the development of a dual bio-/photo-catalytic system for achieving enantioselective hydroamination of enamides,which can give easy access to diverse enantioenriched vicinal diamines.These reactions progress efficiently under green light excitation and exhibit excellent enantioselectivities(up to>99%enantiomeric excess).Mechanistic studies uncovered the synergistic effect of the enzyme and the externally added organophotoredox catalyst Rhodamine B(RhB).This work demonstrates the effectiveness of photobiocatalysis to generate and control high-energy radical intermediates,addressing a long-standing challenge in chemical synthesis.