Marine fish diversity in the Beibu Gulf from 2014 to 2022 was analyzed,using various methods including at-sea fisheries resource surveys,fishing port surveys,underwater survey techniques,and data from literature,books...Marine fish diversity in the Beibu Gulf from 2014 to 2022 was analyzed,using various methods including at-sea fisheries resource surveys,fishing port surveys,underwater survey techniques,and data from literature,books,and databases,from which 1059 fish species across 40 orders,166 families,and 503 genera were identified.Among them,Acanthuriformes displayed the highest diversity,followed by Carangiformes and Perciformes.Notably,eight alien species were found in the Beibu Gulf.The International Union for Conservation of Nature(IUCN)Red List assessment revealed 51threatened species,primarily cartilaginous fish.Taxonomic changes affected 88.70%of species due to classification adjustments,misidentifications,and junior synonymy.This study contributed new data of the gulf,including one additional order,six new families,34 new genera,and 81 new species,emphasizing the dynamic nature of marine ecosystems.Fish diversity in the gulf was relatively lower than the broader South China Sea,attributed to limited habitats and survey methods.Different survey methods,such as gill nets,trap nets,and underwater cameras,yielded varying results.Ocean currents may have transported deep-sea species into the Beibu Gulf,leading to accidental records.Research gaps exist in unexplored areas,warranting further investigation.Therefore,the Beibu Gulf hosts significant marine biodiversity,but taxonomic challenges and undiscovered species require new research and conservation efforts.展开更多
A novel elastic sandwich metamaterial plate with composite periodic rod core is designed,and the frequency band-gap characteristics are numerically and experimentally investigated.The finite element and spectral eleme...A novel elastic sandwich metamaterial plate with composite periodic rod core is designed,and the frequency band-gap characteristics are numerically and experimentally investigated.The finite element and spectral element hybrid method(FE-SEHM)is developed to obtain the dynamic stiffness matrix of the sandwich metamaterial plate.The frequency response curves of the plate structure under the harmonic excitation are calculated using the presented numerical method and validated by the vibration experiment.By comparing with the frequency response curves of sandwich metamaterial plate with pure elastic rod core,improved band-gap properties are achieved from the designed metamaterial plate with composite periodic rod core.The elastic metamaterial plate with composite periodic rod core can generate more band-gaps,so it can suppress the vibration and elastic wave propagation in the structure more effectively.展开更多
Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption,which is promising candidates for new generation electronic and optoelectronic integrat...Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption,which is promising candidates for new generation electronic and optoelectronic integrated circuits.However,the versatility is still limited and need to be extended by the device architectures design.Here,we report an asymmetrically gate two-dimensional(2D)van der Waals heterostructure with hybrid dielectric layer SiO_(2)/hexagonal boron nitride(h-BN),which enable rich function including reconfigurable logic operation and in-sensor information encryption enabled by both volatile and non-volatile optoelectrical modulation.When the partial gate is grounded,the non-volatile light assisted electrostatic doping endowed partially reconfigurable doping between n-type and p-type,which allow the switching of logic XOR and not implication(NIMP).When the global gate is grounded,additionally taking the optical signal as another input signal,logic AND and OR is realized by combined regulation of the light and localized gate voltage.Depending on the high on/off current ratio approaching 105 and reliable&switchable logic gate,in-sensor information encryption and decryption is demonstrated by manipulating the logic output.Hence,these results provide strong extension for current reconfigurable electronic and optoelectronic devices.展开更多
A stimulated emission depletion is capable of breaking the diffraction limit by exciting fluorescent molecules with a solid Gaussian beam and quenching the excited molecules with another donut beam through stimulated ...A stimulated emission depletion is capable of breaking the diffraction limit by exciting fluorescent molecules with a solid Gaussian beam and quenching the excited molecules with another donut beam through stimulated emission.The coincidence degree of these two beams in three dimensions will significantly influence the spatial resolution of the microscope.However,the conventional alignment approach based on raster scanning of gold nanoparticles by the two laser beams separately suffers from a mismatch between fluorescence and scattering modes.To circumvent the above problems,we demonstrate a fast alignment design by scanning the second beam over the fabricated sample,which is made of aggregation-induced emission(AIE)dye resin.The relative positions of solid and donut laser beams can be represented by the fluorescent AIE from the labeled spots in the dye resin.This design achieves ultra-high resolutions of 22 nm in the x/y relative displacement and 27 nm in the z relative displacement for fast spatial matching of the two laser beams.This study has potential applications in scenarios that require the spatial matching of multiple laser beams,and the field of views of different objectives,for example,in a microscope with high precision.展开更多
Colorectal cancer(CRC)is one of the most common malignant tumors worldwide,occurring in the colon or rectum portion.Quinoa is a dicotyledonous plant,and the quinoa bran is the outer seed coat of quinoa.Func-tional mol...Colorectal cancer(CRC)is one of the most common malignant tumors worldwide,occurring in the colon or rectum portion.Quinoa is a dicotyledonous plant,and the quinoa bran is the outer seed coat of quinoa.Func-tional molecules in plants play an important role in the treatment and alleviation of chronic diseases.In this study,quinoa bran was used as the raw material.The active components with an anti-colorectal cancer effect were extracted by acetone and separated with an AB-8 macroporous resin column,which was further identified as terpenoids by liquid-mass spectrometry(LMS),named Quinoa bran terpenoids(QBT).The yield of quinoa bran terpenoids was 0.77%.Moreover,the results showed that QBT significantly inhibited the proliferation of colo-rectal cancer cells DLD-1 and HCT-8 with a concentration gradient dependent manner.Respectively,the IC50 values of DLD-1 and HCT-8 cells were 0.42±0.02 and 0.54±0.05 mg/mL.Further studies showed that QBT upregulated apoptosis-related proteins such as activated-caspase-3,8,and 9.In addition,QBT decreased mito-chondrial membrane potential,promoted the expression of the pro-apoptotic protein Bax,and inhibited the antiapoptotic protein Bcl-2.The experiments showed that QBT significantly repressed the growth of tumors in nude mice.In conclusion,these results indicated that QBT largely inhibits the development of colorectal cancer to large extent through upregulation of caspase-3,8,and 9 and reduction of mitochondrial membrane potential,and has great potential for anti-tumor progression.展开更多
基金Supported by the Regional Innovation Development Joint Fund Project of the National Natural Science Foundation of China(No.U20A2087)the Shiptime Sharing Project of National Natural Science Foundation of China(No.42249911)。
文摘Marine fish diversity in the Beibu Gulf from 2014 to 2022 was analyzed,using various methods including at-sea fisheries resource surveys,fishing port surveys,underwater survey techniques,and data from literature,books,and databases,from which 1059 fish species across 40 orders,166 families,and 503 genera were identified.Among them,Acanthuriformes displayed the highest diversity,followed by Carangiformes and Perciformes.Notably,eight alien species were found in the Beibu Gulf.The International Union for Conservation of Nature(IUCN)Red List assessment revealed 51threatened species,primarily cartilaginous fish.Taxonomic changes affected 88.70%of species due to classification adjustments,misidentifications,and junior synonymy.This study contributed new data of the gulf,including one additional order,six new families,34 new genera,and 81 new species,emphasizing the dynamic nature of marine ecosystems.Fish diversity in the gulf was relatively lower than the broader South China Sea,attributed to limited habitats and survey methods.Different survey methods,such as gill nets,trap nets,and underwater cameras,yielded varying results.Ocean currents may have transported deep-sea species into the Beibu Gulf,leading to accidental records.Research gaps exist in unexplored areas,warranting further investigation.Therefore,the Beibu Gulf hosts significant marine biodiversity,but taxonomic challenges and undiscovered species require new research and conservation efforts.
基金the National Natural Science Foundation of China(No.11761131006)the Research Team Project of Heilongjiang Natural Science Foundation under Grant No.TD2020A001.
文摘A novel elastic sandwich metamaterial plate with composite periodic rod core is designed,and the frequency band-gap characteristics are numerically and experimentally investigated.The finite element and spectral element hybrid method(FE-SEHM)is developed to obtain the dynamic stiffness matrix of the sandwich metamaterial plate.The frequency response curves of the plate structure under the harmonic excitation are calculated using the presented numerical method and validated by the vibration experiment.By comparing with the frequency response curves of sandwich metamaterial plate with pure elastic rod core,improved band-gap properties are achieved from the designed metamaterial plate with composite periodic rod core.The elastic metamaterial plate with composite periodic rod core can generate more band-gaps,so it can suppress the vibration and elastic wave propagation in the structure more effectively.
基金supported by the Beijing Natural Science Foundation(No.JQ20027)the National Science Foundation of China(No.62305013)+2 种基金China Postdoctoral Science Foundation(No.2023M730137)the China National Postdoctoral Program for Innovative Talents(No.BX20230033)Beijing Postdoctoral Research Foundation(No.2023-zz-95).
文摘Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption,which is promising candidates for new generation electronic and optoelectronic integrated circuits.However,the versatility is still limited and need to be extended by the device architectures design.Here,we report an asymmetrically gate two-dimensional(2D)van der Waals heterostructure with hybrid dielectric layer SiO_(2)/hexagonal boron nitride(h-BN),which enable rich function including reconfigurable logic operation and in-sensor information encryption enabled by both volatile and non-volatile optoelectrical modulation.When the partial gate is grounded,the non-volatile light assisted electrostatic doping endowed partially reconfigurable doping between n-type and p-type,which allow the switching of logic XOR and not implication(NIMP).When the global gate is grounded,additionally taking the optical signal as another input signal,logic AND and OR is realized by combined regulation of the light and localized gate voltage.Depending on the high on/off current ratio approaching 105 and reliable&switchable logic gate,in-sensor information encryption and decryption is demonstrated by manipulating the logic output.Hence,these results provide strong extension for current reconfigurable electronic and optoelectronic devices.
基金supported by the National Key Research and Development Program of China(No.2018YFB0704103)National Natural Science Foundation of China(No.62175153)。
文摘A stimulated emission depletion is capable of breaking the diffraction limit by exciting fluorescent molecules with a solid Gaussian beam and quenching the excited molecules with another donut beam through stimulated emission.The coincidence degree of these two beams in three dimensions will significantly influence the spatial resolution of the microscope.However,the conventional alignment approach based on raster scanning of gold nanoparticles by the two laser beams separately suffers from a mismatch between fluorescence and scattering modes.To circumvent the above problems,we demonstrate a fast alignment design by scanning the second beam over the fabricated sample,which is made of aggregation-induced emission(AIE)dye resin.The relative positions of solid and donut laser beams can be represented by the fluorescent AIE from the labeled spots in the dye resin.This design achieves ultra-high resolutions of 22 nm in the x/y relative displacement and 27 nm in the z relative displacement for fast spatial matching of the two laser beams.This study has potential applications in scenarios that require the spatial matching of multiple laser beams,and the field of views of different objectives,for example,in a microscope with high precision.
基金supported by the National Natural Science Founda-tion of China(No.32072220).
文摘Colorectal cancer(CRC)is one of the most common malignant tumors worldwide,occurring in the colon or rectum portion.Quinoa is a dicotyledonous plant,and the quinoa bran is the outer seed coat of quinoa.Func-tional molecules in plants play an important role in the treatment and alleviation of chronic diseases.In this study,quinoa bran was used as the raw material.The active components with an anti-colorectal cancer effect were extracted by acetone and separated with an AB-8 macroporous resin column,which was further identified as terpenoids by liquid-mass spectrometry(LMS),named Quinoa bran terpenoids(QBT).The yield of quinoa bran terpenoids was 0.77%.Moreover,the results showed that QBT significantly inhibited the proliferation of colo-rectal cancer cells DLD-1 and HCT-8 with a concentration gradient dependent manner.Respectively,the IC50 values of DLD-1 and HCT-8 cells were 0.42±0.02 and 0.54±0.05 mg/mL.Further studies showed that QBT upregulated apoptosis-related proteins such as activated-caspase-3,8,and 9.In addition,QBT decreased mito-chondrial membrane potential,promoted the expression of the pro-apoptotic protein Bax,and inhibited the antiapoptotic protein Bcl-2.The experiments showed that QBT significantly repressed the growth of tumors in nude mice.In conclusion,these results indicated that QBT largely inhibits the development of colorectal cancer to large extent through upregulation of caspase-3,8,and 9 and reduction of mitochondrial membrane potential,and has great potential for anti-tumor progression.