In the current era of renewable energy prominence,the wide operational capacity of coal-fired boilers has emerged as crucial for ensuring the sustainability of power plants.However,attaining ultra-low nitrogen oxides(...In the current era of renewable energy prominence,the wide operational capacity of coal-fired boilers has emerged as crucial for ensuring the sustainability of power plants.However,attaining ultra-low nitrogen oxides(NO_x)emissions during periods of low-load operations presents a significant and persistent challenge for coal power enterprises.While techniques such as biomass re-burning and advanced re-burning have shown promise in enhancing NO reduction effciency above 800℃,their elevated levels of chlorine(Cl)and alkali metals pose potential risks to boiler equipment integrity.Therefore,this study proposes the utilization of biomass char derived from pyrolysis as a dual-purpose solution to enhance NO reduction efficiency while safeguarding boiler integrity during low-load operations.Findings indicate that pyrolysis treatment effectively reduces the Cl and alkali metal content of biomass.Specifically,it was determined that biomass char produced through deeply pyrolysis at 300℃achieves the highest NO reduction efficiency while minimizing the presence of harmful components.At a reduction temperature of 700℃,both re-burning and advanced re-burning techniques exhibit NO reduction efficiencies of 55.90%and 62.22%,which is already an ideal deficiency at low temperatures.The addition of water vapor at 700-800℃obviously avoids the oxidation of ammonia to NO in advanced reburning.Upon further analysis,denitrification efficiency in biomass char re-burning and advanced reburning is influenced not only by volatile content but also by physicochemical properties such as porosity and surface functional group distribution under certain reaction conditions.This study provides a theoretical framework for the industrial implementation of biomass char for NO control in coal-fired power plants,offering insights into optimizing NO reduction efficiency while mitigating potential risks to boiler equipment.展开更多
A modified Rushton impeller with two circular covering-plates mounted on the upper and lower sides of the blades was designed.There are gaps between the plates and the blades.The turbulent hydrodynamics was analyzed b...A modified Rushton impeller with two circular covering-plates mounted on the upper and lower sides of the blades was designed.There are gaps between the plates and the blades.The turbulent hydrodynamics was analyzed by the computational fluid dynamics(CFD) method.Firstly,the reliability of the numerical model and simulation method was verified by comparing with the experimental results from literature.Subsequently,the power consumption,flow pattern,mean velocity and mixing time of the covering-plate Rushton impeller(RT-C) were studied and compared with the standard Rushton impeller(RT) operated under the same conditions.Results show that the power consumption can be decreased about 18%.Compared with the almost unchanged flow field in the lower stirred tank,the mean velocity was increased at the upper half of the stirred tank.And in the impeller region,the mean axial and radial velocities were increased,the mean tangential velocity was decreased.In addition,the average mixing time of RT-C was shortened about 4.14% than the counterpart of RT.The conclusions obtained here indicated that RT-C has a more effective mixing performance and it can be used as an alternative of RT in the process industries.展开更多
The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) sepa...The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) separation.In this work,a novel double chemical looping involving both combustion(CLC)and sorption-enhanced reforming(SE-CLR)was proposed towards the co-production of H2 and CO(CLC-SECLRHC)in two separated streams.CLC provides reactant CO_(2) and energy to feed SECLRHC,which generates hydrogen in a higher purity,as well as the calcium cycle to generate CO in a higher purity.Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness.Studies revealed that the optimal molar ratios of oxygen carrier(OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0,respectively.The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs.The desired temperatures of fuel reactor(FR)and reforming reactor(RR)should be 850C and 600C,respectively.The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor,and the NG split ratio for reforming and combustion was 0.53:0.47.Under the optimal conditions,the H2 purity,the H2 yield and the CH4 conversion efficiency were 98.76%,2.31 mol mol-1 and 97.96%,respectively.The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45%in terms of the total hydrogen in both steam and NG.The exergy efficiency of the overall process reached 70.28%.In terms of the conventional plant capacity(75 × 103 t y^(-1))and current raw materials price(2500$t^(-1)),the payback period can be 6.2 years and the IRR would be 11.5,demonstrating an economically feasible and risk resistant capability.展开更多
Due to its low volatile characteristics of lean coal,it is difficult to catch fire and burn out.Therefore,high temperature is needed to maintain combustion efficiency,while,this leads to high nitrogen oxide emission.F...Due to its low volatile characteristics of lean coal,it is difficult to catch fire and burn out.Therefore,high temperature is needed to maintain combustion efficiency,while,this leads to high nitrogen oxide emission.For power plant boilers burning lean coal,stable combustion with lower nitrogen oxide emission is a challenging task.This study applied the 3D numerical simulation on the analysis of a novel de-coupling burner for low-volatile coal and its structure and operation parameters optimization.Results indicate that although it was more difficult for lean coal decoupling burner to ignite lean coal than high volatile coal,the burner formed a stepwise ignition trend,which promoted the rapid ignition of lean coal.Comparison of three central partition plate structure shows that in terms of characteristics of the flow field distribution,rich and lean separation and combustion,the structure with an inclination of 0°showed good performance,with its rich-lean air ratio being 0.85 and concentration ratio being 22.94,and there was an apparent decoupling combustion characteristic.Finally,the structure of the selected burner was optimized for its operational conditions.The optimal operating parameters was determined as the primary air velocity of 24.9 m·s^-1 and the mass flow rate of pulverized coal of 2.5 kg·s^-1,in which the pyrolysis products were utilized as reductive agent more fully.Eventually,the nitrogen oxide was efficiently reduced to nitrogen,which emission concentration was 61.88%lower than that in the design condition.展开更多
基金supported by the Open Topics of State Key Laboratory of Clean and Efficient Coal-Fired Power Generation and Pollution Control(D2022FK103)National Natural Science Foundation of China(22278250)+1 种基金the Shanxi Province Science and Technology Cooperation and Exchange Special Program(202104041101014)the Shanxi Province Scholarship Council。
文摘In the current era of renewable energy prominence,the wide operational capacity of coal-fired boilers has emerged as crucial for ensuring the sustainability of power plants.However,attaining ultra-low nitrogen oxides(NO_x)emissions during periods of low-load operations presents a significant and persistent challenge for coal power enterprises.While techniques such as biomass re-burning and advanced re-burning have shown promise in enhancing NO reduction effciency above 800℃,their elevated levels of chlorine(Cl)and alkali metals pose potential risks to boiler equipment integrity.Therefore,this study proposes the utilization of biomass char derived from pyrolysis as a dual-purpose solution to enhance NO reduction efficiency while safeguarding boiler integrity during low-load operations.Findings indicate that pyrolysis treatment effectively reduces the Cl and alkali metal content of biomass.Specifically,it was determined that biomass char produced through deeply pyrolysis at 300℃achieves the highest NO reduction efficiency while minimizing the presence of harmful components.At a reduction temperature of 700℃,both re-burning and advanced re-burning techniques exhibit NO reduction efficiencies of 55.90%and 62.22%,which is already an ideal deficiency at low temperatures.The addition of water vapor at 700-800℃obviously avoids the oxidation of ammonia to NO in advanced reburning.Upon further analysis,denitrification efficiency in biomass char re-burning and advanced reburning is influenced not only by volatile content but also by physicochemical properties such as porosity and surface functional group distribution under certain reaction conditions.This study provides a theoretical framework for the industrial implementation of biomass char for NO control in coal-fired power plants,offering insights into optimizing NO reduction efficiency while mitigating potential risks to boiler equipment.
基金Supported by the Key Development Foundation of Shandong province(2016GGX103035)
文摘A modified Rushton impeller with two circular covering-plates mounted on the upper and lower sides of the blades was designed.There are gaps between the plates and the blades.The turbulent hydrodynamics was analyzed by the computational fluid dynamics(CFD) method.Firstly,the reliability of the numerical model and simulation method was verified by comparing with the experimental results from literature.Subsequently,the power consumption,flow pattern,mean velocity and mixing time of the covering-plate Rushton impeller(RT-C) were studied and compared with the standard Rushton impeller(RT) operated under the same conditions.Results show that the power consumption can be decreased about 18%.Compared with the almost unchanged flow field in the lower stirred tank,the mean velocity was increased at the upper half of the stirred tank.And in the impeller region,the mean axial and radial velocities were increased,the mean tangential velocity was decreased.In addition,the average mixing time of RT-C was shortened about 4.14% than the counterpart of RT.The conclusions obtained here indicated that RT-C has a more effective mixing performance and it can be used as an alternative of RT in the process industries.
基金supported by National Natural Science Foundation of China(U1810205)The authors would also like to thank the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20220003)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L002)for their support.
文摘The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) separation.In this work,a novel double chemical looping involving both combustion(CLC)and sorption-enhanced reforming(SE-CLR)was proposed towards the co-production of H2 and CO(CLC-SECLRHC)in two separated streams.CLC provides reactant CO_(2) and energy to feed SECLRHC,which generates hydrogen in a higher purity,as well as the calcium cycle to generate CO in a higher purity.Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness.Studies revealed that the optimal molar ratios of oxygen carrier(OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0,respectively.The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs.The desired temperatures of fuel reactor(FR)and reforming reactor(RR)should be 850C and 600C,respectively.The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor,and the NG split ratio for reforming and combustion was 0.53:0.47.Under the optimal conditions,the H2 purity,the H2 yield and the CH4 conversion efficiency were 98.76%,2.31 mol mol-1 and 97.96%,respectively.The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45%in terms of the total hydrogen in both steam and NG.The exergy efficiency of the overall process reached 70.28%.In terms of the conventional plant capacity(75 × 103 t y^(-1))and current raw materials price(2500$t^(-1)),the payback period can be 6.2 years and the IRR would be 11.5,demonstrating an economically feasible and risk resistant capability.
基金supported by National Natural Science Foundation of China—Shanxi coal based low carbon joint fund(U1610254)Shanxi Province Basic Applied Research Youth Fund(201801D221345)2018 Xiangyuan County Solid Waste Comprehensive Utilization Science and Technology Projects(2018XYSDYY-14)。
文摘Due to its low volatile characteristics of lean coal,it is difficult to catch fire and burn out.Therefore,high temperature is needed to maintain combustion efficiency,while,this leads to high nitrogen oxide emission.For power plant boilers burning lean coal,stable combustion with lower nitrogen oxide emission is a challenging task.This study applied the 3D numerical simulation on the analysis of a novel de-coupling burner for low-volatile coal and its structure and operation parameters optimization.Results indicate that although it was more difficult for lean coal decoupling burner to ignite lean coal than high volatile coal,the burner formed a stepwise ignition trend,which promoted the rapid ignition of lean coal.Comparison of three central partition plate structure shows that in terms of characteristics of the flow field distribution,rich and lean separation and combustion,the structure with an inclination of 0°showed good performance,with its rich-lean air ratio being 0.85 and concentration ratio being 22.94,and there was an apparent decoupling combustion characteristic.Finally,the structure of the selected burner was optimized for its operational conditions.The optimal operating parameters was determined as the primary air velocity of 24.9 m·s^-1 and the mass flow rate of pulverized coal of 2.5 kg·s^-1,in which the pyrolysis products were utilized as reductive agent more fully.Eventually,the nitrogen oxide was efficiently reduced to nitrogen,which emission concentration was 61.88%lower than that in the design condition.