期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hydrodynamic instability growth of the fuel-ablator interface induced by rippled rarefaction waves in inertial confinement fusion implosion experiments
1
作者 Zheng Yan Zhu Chen +6 位作者 Jiwei Li Lifeng Wang Zhiyuan Li Chao Zhang fengjun ge Junfeng Wu Weiyan Zhang 《Matter and Radiation at Extremes》 2025年第5期84-93,共10页
Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,ins... Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,insufficient doping of the ablator material can result in highenergy X-ray preheat,which may trigger the development of a classical-like Rayleigh-Taylor instability(RTI)at the fuel-ablator interface.In implosion experiments at the Shenguang 100 kJ-level laser facility,the primary source of perturbation is the roughness of the inner DT ice interface.In this study,we propose an analytical model to describe the feed-out process of the initial roughness of the inner DT ice interface.The perturbation amplitude derived from this model serves as the initial seed for the late-time RTI during the acceleration phase.Our findings confirm the presence of classical-like RTI at the fuel-ablator interface.Numerical simulations conducted using a radiation hydrodynamic code validate the proposed analytical model and demonstrate the existence of a peak mode number in both the feed-out process and the classical-like RTI.It provides an alternative bridge between the current target fabrication limitations and the unexpected implosion performance. 展开更多
关键词 inertial confinement fusion fuel ablator interface Rayleigh Taylor instability hydrodynamic instability radiation hydrodynamic code numerical simulations rippled rarefaction waves performance inertial confinement fusion implosionsduring
在线阅读 下载PDF
Study of the asymmetry of hot-spot self-emission imaging of inertial confinement fusion implosion driven by high-power laser facilities 被引量:1
2
作者 Yunsong DONG Dongguo KANG +19 位作者 Wei JIANG Zhicheng LIU Zhongjing CHEN Xing ZHANG Xin LI Chuankui SUN Chuansheng YIN Jianjun DONG Zhiwen YANG Yudong PU Ji YAN Bo YU Tianxuan HUANG Wenyong MIAO Zhensheng DAI fengjun ge Dong YANG Feng WANG Jiamin YANG Shaoen JIANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第8期20-26,共7页
Implosion asymmetry is a crucial problem quenching ignition in the field of inertial confinement fusion.A forward-calculation method based on 1D and 2D hydrodynamic simulations has been developed to generate and study... Implosion asymmetry is a crucial problem quenching ignition in the field of inertial confinement fusion.A forward-calculation method based on 1D and 2D hydrodynamic simulations has been developed to generate and study the x-ray images of hot-spot self-emission,indicating asymmetry integrated over the entire drive pulse.It is shown that the x-ray imaging photon energy should be higher to avoid the influence of the remaining shell.The contour level(percentage of the maximum emission intensity)and spatial resolution should be as low as possible,optimally less than 20%and 3μm,for characterization of higher-mode signatures such as Ps-P12 by x-ray self-emission images.On the contrary,signatures of lower-mode such as P2 remain clear at all contour levels and spatial resolutions.These key results can help determine the optimal diagnostics,laser,and target parameters for implosion experiments.Recent typical hot-spot asymmetry measurements and applications on the Shenguang 100 kJ class laser facility are also reported. 展开更多
关键词 INERTIAL CONFINEMENT fusion IMPLOSION x-ray self-emission HOT-SPOT asymmetry
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部