期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Electronic modulation of oxygen anion intercalated perovskite oxides for pseudocapacitance
1
作者 Tingting Liang Ruilin Hou +3 位作者 Wei Li fengjiang chen Shan Xu Xingbin Yan 《Science China Materials》 2025年第10期3511-3518,共8页
The perovskite oxides were known as an oxygen anion intercalation electrode material for pseudocapacitance in 2014[1].Although this new energy storage mechanism is defined as oxygen anion intercalation,it differs fund... The perovskite oxides were known as an oxygen anion intercalation electrode material for pseudocapacitance in 2014[1].Although this new energy storage mechanism is defined as oxygen anion intercalation,it differs fundamentally from ion intercalation in batteries.As shown in Fig.1a,b,energy storage and release are mainly achieved through bulk redox reactions in the electrodes for batteries,controlled by bulk diffusion,demonstrating high energy and low power density[2].For pseudocapacitors,a type of supercapacitor,their electrochemical characteristics differ from those of double-layer capacitors,which only undergo physical reactions,and also differ from batteries,which undergo Faraday redox reactions in the bulk phase.Pseudocapacitance primarily relies on surface Faradaic reactions caused by charge transfer at or near the surface,without bulk diffusion control,enabling them to maintain impressive energy density while also exhibiting extremely fast reaction kinetics[3].Oxygen anion intercalation is a typical pseudocapacitive behavior. 展开更多
关键词 bulk redox reactions oxygen anion intercalationit ion intercalation perovskite oxides new energy storage mechanism electronic modulation oxygen anion intercalation
原文传递
Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities 被引量:3
2
作者 Neng chen Yang Zhou +10 位作者 Yinping Liu Yuanyuan Mi Sisi Zhao Wang Yang Sai Che Hongchen liu fengjiang chen Chong Xu Guang Ma Xue Peng Yongfeng Li 《Nano Research》 SCIE EI CSCD 2022年第8期7703-7712,共10页
Despite enormous efforts in actuators,most researches are only limited to various actuation behaviors and demonstrations of soft materials.It has not yet been reported to capture and monitor its movement status in an ... Despite enormous efforts in actuators,most researches are only limited to various actuation behaviors and demonstrations of soft materials.It has not yet been reported to capture and monitor its movement status in an invisible environment.Therefore,it is of great significance to develop a self-sensing and self-actuating dual-function hydrogel actuator system to realize real-time monitoring.Here,we report a bifunctional hydrogel system with self-actuating and self-monitoring abilities,which combines the functions of photothermal actuation and electrical resistance sensing into a single material.The bilayer tough conductive hydrogel synthesized by unconventional complementary concentration recombination and cryogenic freezing technique presents a dense conductive network and high-porosity structure,achieving high toughness at 190.3 kPa of tensile strength,high stretchability(164.3%strain),and the toughness dramatically(1,471.4 kJ·m^(−3)).The working mechanism of the monitoring and self-sensing system is accomplished through the integrated monitoring device of surface temperature–bending angle–electron current,to solve the problem of not apperceiving actuator motion state when encountering obstacles in an invisible environment.We demonstrated for the first time a photothermal actuator’s motion of a football player and goalkeeper to finish the penalty and a soft actuator hand,which can achieve the action of sticking to grab and release under photo-thermal actuation.When connected to the control closed circuit,the actuator realized closed-loop monitoring and sensing feedback.The development of bifunctional hydrogel systems may bring new opportunities and ideas in the fields of material science,circuit technology,sensors,and mechanical engineering. 展开更多
关键词 photo-thermal hydrogel actuator graphene nanosheets SELF-MONITORING self-actuating surface temperature-bending angle-electron current
原文传递
Bifunctional Mo-doped FeCo–Se aerogels catalysts with excellent OER and ORR activities for electro-Fenton process
3
作者 fengjiang chen Fan Yang +7 位作者 Sai Che Hongchen Liu Chong Xu Neng chen Yankun Sun Chunhui Yu Zhijie Wu Yongfeng Li 《Green Chemical Engineering》 EI CSCD 2023年第3期365-375,共11页
Antibiotic pollution in aqueous solutions seriously endangers the natural environment and public health.In this work,Mo-doped transition metal FeCo–Se metal aerogels(MAs)were investigated as bifunctional catalysts fo... Antibiotic pollution in aqueous solutions seriously endangers the natural environment and public health.In this work,Mo-doped transition metal FeCo–Se metal aerogels(MAs)were investigated as bifunctional catalysts for the removal of sulfamethazine(SMT)in solution.The optimal Mo_(0.3)Fe_(1)Co_(3)–Se catalyst can remove 97.7% of SMT within 60 min(SMT content:10 mg/L,current intensity:10 mA/cm 2).The unique porous cross-linked structure of aerogel confered the catalyst sufficient active sites and efficient mass transfer channels.For the anode,Mo_(0.3)Fe_(1)Co_(3)–Se MAs exhibits superior oxygen evolution reaction(OER)property,with an overpotential of only 235 mV(10 mA/cm 2).Compared with Fe_(1)Co_(3) MAs or Mo_(0.3)Fe_(1)Co_(3) MAs,density functional theory(DFT)demonstrated that the better catalytic capacity of Mo_(0.3)Fe_(1)Co_(3)–Se MAs is attributed to the doping of Mo species and selenization lowers the energy barrier for the*OOH to O_(2) step in the OER process.Excellent OER perfor-mance ensures the self-oxygenation in this system,avoiding the addition of air or oxygen in the traditional electro-Fenton process.For the cathode,Mo doping can lead to the lattice contraction and metallic character of CoSe_(2),which is beneficial to accelerate electron transfer.The adjacent Co active sites effectively adsorb*OOH and inhibit the breakage of the O–O bond.Rotating ring disk electrode(RRDE)test indicated that Mo_(0.3)Fe_(1)Co_(3)–Se MAs has an excellent 2e^(-)ORR activity with H_(2)O_(2) selectivity up to 88%,and the generated H_(2)O_(2) is activated by the adjacent Fe site through heterogeneous Fenton process to generate⋅OH. 展开更多
关键词 Transition metal AEROGELS Electric Fenton 2e^(-)ORR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部