The differentiation and maturation of oligodendrocyte precursor cells(OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions o...The differentiation and maturation of oligodendrocyte precursor cells(OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1 L(myelin transcription factor 1-like), mainly expressed in neurons,has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1 L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1 L in neuron/glia antigen 2-positive(NG2+)OPCs was significantly higher than that in mature CC1+oligodendrocytes. In primary cultured OPCs,overexpression of Myt1 L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1 L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. Ch IP assays showed that Myt1 L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1 L is an essential regulator of OPC differentiation, thereby supporting Myt1 L as a potential therapeutic target for demyelinating diseases.展开更多
The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells(OPCs) to differentiate, since OPCs and oligodendrocytelin...The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells(OPCs) to differentiate, since OPCs and oligodendrocytelineage cells that are unable to fully differentiate are found in the areas of demyelination. Thus, promoting the differentiation of OPCs is vital for the treatment of demyelinating diseases. Shikimic acid(SA) is mainly derived from star anise, and is reported to have antiinfluenza, anti-oxidation, and anti-tumor effects. In the present study, we found that SA significantly promoted the differentiation of cultured rat OPCs without affecting their proliferation and apoptosis. In mice, SA exerted therapeutic effects on experimental autoimmune encephalomyelitis(EAE), such as alleviating clinical EAE scores, inhibiting inflammation, and reducing demyelination in the CNS. SA also promoted the differentiation of OPCs as well as their remyelination after lysolecithin-induced demyelination.Furthermore, we showed that the promotion effect of SA on OPC differentiation was associated with the up-regulation of phosphorylated m TOR. Taken together, our resultsdemonstrated that SA could act as a potential drug candidate for the treatment of demyelinating diseases.展开更多
The liver has a complex cellular composition and a remarkable regenerative capacity.The primary cell types in the liver are two parenchymal cell populations,hepatocytes and cholangiocytes,that perform most of the func...The liver has a complex cellular composition and a remarkable regenerative capacity.The primary cell types in the liver are two parenchymal cell populations,hepatocytes and cholangiocytes,that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells,endothelia and various hemopoietic cell populations.The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates,the extracellular matrix,working synergistically with soluble paracrine and systemic signals.In recent years,with the rapid development of genetic sequencing technologies,research on the liver’s cellular composition and its regulatory mechanisms during various conditions has been extensively explored.Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases,offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation.This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair.Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.展开更多
基金supported by the International Cooperation and Exchange Program of the National Natural Science Foundation of China(81461138035)the National Natural Science Foundation of China(81371326,31571066,and 31371068)+2 种基金the National Basic Research Development Program of China(2016YFA0100802)the UK Medical Research Council(MR/M010503/1)the UK Multiple Sclerosis Society(33)
文摘The differentiation and maturation of oligodendrocyte precursor cells(OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1 L(myelin transcription factor 1-like), mainly expressed in neurons,has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1 L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1 L in neuron/glia antigen 2-positive(NG2+)OPCs was significantly higher than that in mature CC1+oligodendrocytes. In primary cultured OPCs,overexpression of Myt1 L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1 L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. Ch IP assays showed that Myt1 L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1 L is an essential regulator of OPC differentiation, thereby supporting Myt1 L as a potential therapeutic target for demyelinating diseases.
基金supported by the National Natural Science Foundation of China(31571066 and 31771129)the National Basic Research Development Program of China(2016YFA0100802)
文摘The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells(OPCs) to differentiate, since OPCs and oligodendrocytelineage cells that are unable to fully differentiate are found in the areas of demyelination. Thus, promoting the differentiation of OPCs is vital for the treatment of demyelinating diseases. Shikimic acid(SA) is mainly derived from star anise, and is reported to have antiinfluenza, anti-oxidation, and anti-tumor effects. In the present study, we found that SA significantly promoted the differentiation of cultured rat OPCs without affecting their proliferation and apoptosis. In mice, SA exerted therapeutic effects on experimental autoimmune encephalomyelitis(EAE), such as alleviating clinical EAE scores, inhibiting inflammation, and reducing demyelination in the CNS. SA also promoted the differentiation of OPCs as well as their remyelination after lysolecithin-induced demyelination.Furthermore, we showed that the promotion effect of SA on OPC differentiation was associated with the up-regulation of phosphorylated m TOR. Taken together, our resultsdemonstrated that SA could act as a potential drug candidate for the treatment of demyelinating diseases.
基金funded by Major Program of National Key Research and Development Project(Nos.2020YFA0112600 and 2019YFA0801502)National Natural Science Foundation of China(Nos.82173019,82270638,and 82203741)+8 种基金Shanghai Pujiang Program(No.21PJD059)the Project of Shanghai Science and Technology Commission(Nos.22ZR1451100,19140902900,and 22Y11908500),Program of Shanghai Academic/Technology Research Leader(No.20XD1434000)Peak Disciplines(Type Ⅳ)of Institutions of Higher Learning in Shanghai,Jiangxi Provincial Natural Science Foundation(No.20212ACB206033)Shanghai Engineering Research Center of Stem Cells Translational Medicine(No.20DZ2255100)funded by Vesta Therapeutics(Bethesda,MD),an NIH grant(HL051587)awarded to J.Piedrahita(NCSU,Raleigh,NC)funding from the UNC School of Medicine,the Fibrolamellar Carcinoma Foundation(Greenwich,CT)by multiple NIH Core and Center grants(5P41EB002025)Center for Gastrointestinal and Biliary Disease Biology(NIDDK Grant:P30 DK034987)the Lineberger Cancer Center grant(NCI grant#CA016086).
文摘The liver has a complex cellular composition and a remarkable regenerative capacity.The primary cell types in the liver are two parenchymal cell populations,hepatocytes and cholangiocytes,that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells,endothelia and various hemopoietic cell populations.The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates,the extracellular matrix,working synergistically with soluble paracrine and systemic signals.In recent years,with the rapid development of genetic sequencing technologies,research on the liver’s cellular composition and its regulatory mechanisms during various conditions has been extensively explored.Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases,offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation.This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair.Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.