In this study,various nonionic surfactants(NS) with different ethylene oxide(EO) numbers and tail lengths and its binary blends with anionic surfactants(AS) were used as emulsifiers for naphthenic oil to form the micr...In this study,various nonionic surfactants(NS) with different ethylene oxide(EO) numbers and tail lengths and its binary blends with anionic surfactants(AS) were used as emulsifiers for naphthenic oil to form the microemulsion metalworking fluids(MWFs),and the effects of them on the stability of the emulsion system were investigated by formulation triangle method.The results indicated that binary complex surfactants of NS and AS as emulsifiers exhibited better emulsifying effect than that of single NS.NS with different EO numbers and tail lengths presented various emulsifying effects.NS(EO=10)exhibited the greatest number of stable formulations,especially the TX-10,but no linear relationship existed between the number of stable formulations and the tail length of NS.In addition,aromatic primary alcohol ethoxy late(APAE) series surfactants containing benzene groups similar to the cycloalkanes in the naphthenic oil so that presented the best emulsifying affect and the greatest number of stable formulations.The co-surfactant of sodium dodecyl benzene sulfonate(SDBS) binary blends with NS exerted the best synergistic effect,and the stable formulations numbers were ranged from 5 to 7,next sodium stearate(SS) comes last followed by sodium dodecyl sulfate(SDS-1) and sodium dodecyl sulfonate(SDS-2).展开更多
The high effective nano-hybrid pour point depressant(PPD)has attracted extensive attention for its po-tential application in improving the cold flow properties of diesel fuel.In this paper,the nano-hybrid PPD was prep...The high effective nano-hybrid pour point depressant(PPD)has attracted extensive attention for its po-tential application in improving the cold flow properties of diesel fuel.In this paper,the nano-hybrid PPD was prepared by melt-blending method using three different alkyl chain lengths(i.e.,tetradecyl,hexade-cyl,and octodecyl)of n-alkyl methacrylate-maleic anhydride copolymers(R 1 MC-MA,R 1=C_(14),C_(16),C_(18))and SiO_(2)nanoparticles.The effect of those nano-hybrid PPDs on the cold filter plugging point(CFPP)and solidifying point(SP)depressing of diesel fuel were studied.Results indicated that nano-hybrid PPD showed much better performance on diesel fuel.The diesel fuel treated with 0.2 wt%C_(14)MC-MA/SiO_(2)nano-hybrid PPD exhibited the best depression in CFPP and SP by 6℃ and 18℃,respectively,which higher than that of single C 14 MC-MA.Viscosity-temperature curves and polarized optical microscopy were conducted to explore the performance mechanism;and results presented that nano-hybrid PPD of C_(14)MC-MA/SiO_(2)could effectively lower the low-temperature viscosity,and modify the crystallization behavior and crystal morphology of diesel.Therefore,the cold flow properties of diesel were significantly improved.展开更多
基金supported from the Shanghai Association for Science and Technology Achievements Transformation Alliance Program(No.LM201851)the National Natural Science Foundation of China(Nos.21878188,21606151 and 21707092)+2 种基金Shanghai Excellent Technology Leaders Program(No.17XD1424900)"Chenguang Program"from Shanghai Education Development FoundationShanghai Municipal Education Commission(No.18CGB12)。
文摘In this study,various nonionic surfactants(NS) with different ethylene oxide(EO) numbers and tail lengths and its binary blends with anionic surfactants(AS) were used as emulsifiers for naphthenic oil to form the microemulsion metalworking fluids(MWFs),and the effects of them on the stability of the emulsion system were investigated by formulation triangle method.The results indicated that binary complex surfactants of NS and AS as emulsifiers exhibited better emulsifying effect than that of single NS.NS with different EO numbers and tail lengths presented various emulsifying effects.NS(EO=10)exhibited the greatest number of stable formulations,especially the TX-10,but no linear relationship existed between the number of stable formulations and the tail length of NS.In addition,aromatic primary alcohol ethoxy late(APAE) series surfactants containing benzene groups similar to the cycloalkanes in the naphthenic oil so that presented the best emulsifying affect and the greatest number of stable formulations.The co-surfactant of sodium dodecyl benzene sulfonate(SDBS) binary blends with NS exerted the best synergistic effect,and the stable formulations numbers were ranged from 5 to 7,next sodium stearate(SS) comes last followed by sodium dodecyl sulfate(SDS-1) and sodium dodecyl sulfonate(SDS-2).
基金supported by the National Natural Science Foundation of China(Nos.22008155,22075183,21878188 and 21975161)Chenguang Program of Shanghai Education Devel-opment Foundation and Shanghai Municipal Education Commis-sion(No.19CG69).
文摘The high effective nano-hybrid pour point depressant(PPD)has attracted extensive attention for its po-tential application in improving the cold flow properties of diesel fuel.In this paper,the nano-hybrid PPD was prepared by melt-blending method using three different alkyl chain lengths(i.e.,tetradecyl,hexade-cyl,and octodecyl)of n-alkyl methacrylate-maleic anhydride copolymers(R 1 MC-MA,R 1=C_(14),C_(16),C_(18))and SiO_(2)nanoparticles.The effect of those nano-hybrid PPDs on the cold filter plugging point(CFPP)and solidifying point(SP)depressing of diesel fuel were studied.Results indicated that nano-hybrid PPD showed much better performance on diesel fuel.The diesel fuel treated with 0.2 wt%C_(14)MC-MA/SiO_(2)nano-hybrid PPD exhibited the best depression in CFPP and SP by 6℃ and 18℃,respectively,which higher than that of single C 14 MC-MA.Viscosity-temperature curves and polarized optical microscopy were conducted to explore the performance mechanism;and results presented that nano-hybrid PPD of C_(14)MC-MA/SiO_(2)could effectively lower the low-temperature viscosity,and modify the crystallization behavior and crystal morphology of diesel.Therefore,the cold flow properties of diesel were significantly improved.