期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Robotic computing system and embodied AI evolution:an algorithm-hardware co-design perspective
1
作者 Longke Yan Xin Zhao +7 位作者 Bohan Yang Yongkun Wu Guangnan Dai Jiancong Li Chi-Ying Tsui Kwang-Ting Cheng Yihan Zhang fengbin tu 《Journal of Semiconductors》 2025年第10期6-23,共18页
Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap fr... Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap from traditional robotics to hierarchical and end-to-end models.This algorithmic advancement poses a critical challenge in achieving balanced system-wide performance.Therefore,algorithm-hardware co-design has emerged as the primary methodology,which ana-lyzes algorithm behaviors on hardware to identify common computational properties.These properties can motivate algo-rithm optimization to reduce computational complexity and hardware innovation from architecture to circuit for high performance and high energy efficiency.We then reviewed recent works on robotic and embodied AI algorithms and computing hard-ware to demonstrate this algorithm-hardware co-design methodology.In the end,we discuss future research opportunities by answering two questions:(1)how to adapt the computing platforms to the rapid evolution of embodied AI algorithms,and(2)how to transform the potential of emerging hardware innovations into end-to-end inference improvements. 展开更多
关键词 robotic computing system embodied AI algorithm-hardware co-design AI chip large-scale AI models
在线阅读 下载PDF
Towards efficient generative AI and beyond-AI computing:New trends on ISSCC 2024 machine learning accelerators
2
作者 Bohan Yang Jia Chen fengbin tu 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期12-15,共4页
Compared to the last decade when the convolution neu-ral network(CNN)dominated the research field,machine learn-ing(ML)algorithms have reached a pivotal moment called the generative artificial intelligence(AI)era.With... Compared to the last decade when the convolution neu-ral network(CNN)dominated the research field,machine learn-ing(ML)algorithms have reached a pivotal moment called the generative artificial intelligence(AI)era.With the emer-gence of large-scale foundation models[1],such as large multi-modal model(LMM)GPT-4[2]and text-to-image generative model DALL·E[3]. 展开更多
关键词 ISSCC BEYOND AI
在线阅读 下载PDF
低功耗神经网络计算芯片技术研究 被引量:2
3
作者 严佳乐 张颖 +7 位作者 涂锋斌 杨建勋 郑时轩 欧阳鹏 刘雷波 谢源 魏少军 尹首一 《中国科学:信息科学》 CSCD 北大核心 2019年第3期314-333,共20页
当前人工智能引发了全球的热潮,它涵盖了图像识别、视频检索、语音识别、自动驾驶等各类智能应用.在人工智能算法中,神经网络算法扮演着举足轻重的作用,也成为了当前的研究热点.但是神经网络算法本身具有灵活性高、计算复杂、数据量大... 当前人工智能引发了全球的热潮,它涵盖了图像识别、视频检索、语音识别、自动驾驶等各类智能应用.在人工智能算法中,神经网络算法扮演着举足轻重的作用,也成为了当前的研究热点.但是神经网络算法本身具有灵活性高、计算复杂、数据量大的特点,这也对计算平台提出了高性能、低功耗、高灵活性及高存储等方面的需求.针对神经网络专用芯片,本文提出了可重构硬件架构来满足神经网络的灵活性需求,以可重构架构为基础的Thinker系列可以执行多类神经网络运算.在该架构基础上,本文探究了相应的数据访存优化方案来降低功耗.在存储系统优化方面,基于eDRAM的神经网络加速方案和计算存储一体化ReRAM方案可以满足神经网络计算在存储性能及低功耗方面的需求,它们配合可重构硬件架构可以实现全新的神经网络加速框架.在高效计算方面,本文针对低比特神经网络的标准卷积计算提出基于积分和基于滤波器拆分特征重建的优化方案,以此满足高性能需求. 展开更多
关键词 人工智能 神经网络算法 神经网络专用芯片 可重构架构 低功耗
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部