期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fault Feature Extraction of Diesel Engine Based on Bispectrum Image Fractal Dimension 被引量:1
1
作者 Jian Zhang Chang-Wen Liu +2 位作者 feng-rong bi Xiao-Bo bi Xiao Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期216-226,共11页
Fault feature extraction has a positive effect on accurate diagnosis of diesel engine. Currently, studies of fault feature extraction have focused on the time domain or the frequency domain of signals. However, early ... Fault feature extraction has a positive effect on accurate diagnosis of diesel engine. Currently, studies of fault feature extraction have focused on the time domain or the frequency domain of signals. However, early fault signals are mostly weak energy signals, and time domain or frequency domain features will be overwhelmed by strong back?ground noise. In order consistent features to be extracted that accurately represent the state of the engine, bispectrum estimation is used to analyze the nonlinearity, non?Gaussianity and quadratic phase coupling(QPC) information of the engine vibration signals under different conditions. Digital image processing and fractal theory is used to extract the fractal features of the bispectrum pictures. The outcomes demonstrate that the diesel engine vibration signal bispectrum under different working conditions shows an obvious differences and the most complicated bispectrum is in the normal state. The fractal dimension of various invalid signs is novel and diverse fractal parameters were utilized to separate and characterize them. The value of the fractal dimension is consistent with the non?Gaussian intensity of the signal, so it can be used as an eigenvalue of fault diagnosis, and also be used as a non?Gaussian signal strength indicator. Consequently, a symptomatic approach in view of the hypothetical outcome is inferred and checked by the examination of vibration signals from the diesel motor. The proposed research provides the basis for on?line monitoring and diagnosis of valve train faults. 展开更多
关键词 Engine fault diagnosis Bispectrum image processing FRACTAL Signal processing
在线阅读 下载PDF
Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and FastICA-SVM 被引量:10
2
作者 Ya-bing Jing Chang-Wen Liu +3 位作者 feng-rong bi Xiao-Yang bi Xia Wang Kang Shao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期991-1007,共17页
Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying ... Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying fea- tures. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastlCA-SVM achieves higher classification accuracy and makes better general- ization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastlCA- SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of fea- ture extraction and the fault diagnosis of diesel engines. 展开更多
关键词 Feature extraction Diesel engine valve train FastlCA PCA Support vector machine
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部