Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical...Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical multiple bacterial infections and monitor food microbial contamination in production sites in real-time.In this work,we developed a 4-mercaptophenylboronic acid gold nanoparticles(4-MPBA-AuNPs)-functionalized hydrogel microneedle(MPBA-H-MN)for bacteria detection in skin interstitial fluid.MPBA-H-MN could conveniently capture and enrich a variety of bacteria within 5 min.Surface enhanced Raman spectroscopy(SERS)detection was then performed and combined with machine learning technology to distinguish and identify a variety of bacteria.Overall,the capture efficiency of this method exceeded 50%.In the concentration range of 1×10_(7) to 1×10^(10) colony-forming units/mL(CFU/mL),the corresponding SERS intensity showed a certain linear relationship with the bacterial concentration.Using random forest(RF)-based machine learning,bacteria were effectively distinguished with an accuracy of 97.87%.In addition,the harmless disposal of used MNs by photothermal ablation was convenient,environmentally friendly,and inexpensive.This technique provided a potential method for rapid and real-time diagnosis of multiple clinical bacterial infections and for monitoring microbial contamination of food in production sites.展开更多
A Reconfigurable Intelligent Surface(RIS)can relay signals from the transmitter to the receiver.In this regard,RISs operate similarly to traditional relays.We design a Multiple-Input-Multiple-Output(MIMO)system with a...A Reconfigurable Intelligent Surface(RIS)can relay signals from the transmitter to the receiver.In this regard,RISs operate similarly to traditional relays.We design a Multiple-Input-Multiple-Output(MIMO)system with a hybrid network of RIS and Half-Duplex(HD)Amplify-and-Forward(AF)relay.We model the system’s signal propagation and propose a new algorithm to get the system’s Achievable Rate(AR)value.We complete simulations to evaluate the performance of the RIS and HD-AF relay hybrid network system compared to the system assisted by either the RIS or HD-AF relay.The simulations indicate that many factors can considerably influence the system performance.Selecting an optimal placement for the RIS and relay can result in the best performance for the RIS and HD-AF relay hybrid network system in situations where the direct link between the receiver and transmitter is absent.展开更多
The cell membrane,a fluid interface composed of self-assembled phospholipid molecules,is a vital component of biological systems that maintains cellular stability and prevents the invasion of foreign toxins.Due to its...The cell membrane,a fluid interface composed of self-assembled phospholipid molecules,is a vital component of biological systems that maintains cellular stability and prevents the invasion of foreign toxins.Due to its inherent fluidity,the cell membrane can undergo bending,shearing,and stretching,making membrane deformation crucial in processes like cell adhesion,migration,phagocytosis,and signal transduction.Within the plasma membrane are highly ordered dynamic structures formed by lipid molecules,known as“lipid rafts,”whose dynamic dissociation and reorganization are prerequisites for membrane deformation.Fluorescent probes have emerged as vital tools for studying these dynamic processes,offering a non-destructive,in situ,and real-time imaging method.By strategically designing these probes,researchers can image not only the microdomains of cell membranes but also explore more complex processes such as membrane fusion and fission.This review systematically summarizes the latest advancements in the application of fluorescent probes for cell membrane imaging.It also discusses the current challenges and provides insights into future research directions.We hope this review inspires further studies on the dynamic processes of complex cell membranes using fluorescent probes,ultimately advancing our understanding of the mechanisms underlying membrane dissociation,reorganization,fusion,and separation,and fostering research and therapeutic development for membrane-associated diseases.展开更多
Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge co...Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge construction.This paper presents a case study of a large-span prestressed concrete(PC)variable-section continuous girder bridge in China,proposing a feedback system for construction monitoring and establishing a finite element(FE)analysis model for the entire bridge.The alignment of the completed bridge adheres to the initial design expectations,with maximum displacement and pre-arch differences from the ideal state measuring 6.39 and 17.7 mm,respectively,which were less than the 20 mm limit required by the specification.Additionally,the stress monitoring showed that the maximum compressive stress was 10.44 MPa,which was 7.5%different from the finite element results,and better predicted the most unfavorable possible location.These results demonstrate that a scientifically rigorous construction monitoring and feedback system can ensure the safety of bridge construction and meet the expected construction standards.The findings presented in this paper provide valuable insights for bridge construction monitoring practices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.:82204340,82173954,and 82073815)the Natural Science Foundation of Jiangsu Province,China(Grant No.:BK20221048)+1 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent,China(Grant No.:2022ZB295)Key Laboratory Project of Quality Control of Chinese Herbal Medicines and Decoction Pieces,Gansu Institute for Drug Control,China(Grant No.:2024GSMPA-KL02).
文摘Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical multiple bacterial infections and monitor food microbial contamination in production sites in real-time.In this work,we developed a 4-mercaptophenylboronic acid gold nanoparticles(4-MPBA-AuNPs)-functionalized hydrogel microneedle(MPBA-H-MN)for bacteria detection in skin interstitial fluid.MPBA-H-MN could conveniently capture and enrich a variety of bacteria within 5 min.Surface enhanced Raman spectroscopy(SERS)detection was then performed and combined with machine learning technology to distinguish and identify a variety of bacteria.Overall,the capture efficiency of this method exceeded 50%.In the concentration range of 1×10_(7) to 1×10^(10) colony-forming units/mL(CFU/mL),the corresponding SERS intensity showed a certain linear relationship with the bacterial concentration.Using random forest(RF)-based machine learning,bacteria were effectively distinguished with an accuracy of 97.87%.In addition,the harmless disposal of used MNs by photothermal ablation was convenient,environmentally friendly,and inexpensive.This technique provided a potential method for rapid and real-time diagnosis of multiple clinical bacterial infections and for monitoring microbial contamination of food in production sites.
文摘A Reconfigurable Intelligent Surface(RIS)can relay signals from the transmitter to the receiver.In this regard,RISs operate similarly to traditional relays.We design a Multiple-Input-Multiple-Output(MIMO)system with a hybrid network of RIS and Half-Duplex(HD)Amplify-and-Forward(AF)relay.We model the system’s signal propagation and propose a new algorithm to get the system’s Achievable Rate(AR)value.We complete simulations to evaluate the performance of the RIS and HD-AF relay hybrid network system compared to the system assisted by either the RIS or HD-AF relay.The simulations indicate that many factors can considerably influence the system performance.Selecting an optimal placement for the RIS and relay can result in the best performance for the RIS and HD-AF relay hybrid network system in situations where the direct link between the receiver and transmitter is absent.
基金supported by the National Nature Science Foundation of China(22107028)State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF2307)+4 种基金Central Guidance Fund for Local Science and Technology Development Project(2024FRD05069)Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0335)ML.wishes to thank the support of the National Natural Science Foundation of China(22308220)Shenzhen Uni-versity Third-Phase Project of Constructing High-Level University(000001032104)the Research Team Culti-vation Program of Shenzhen University(2023QNT005).
文摘The cell membrane,a fluid interface composed of self-assembled phospholipid molecules,is a vital component of biological systems that maintains cellular stability and prevents the invasion of foreign toxins.Due to its inherent fluidity,the cell membrane can undergo bending,shearing,and stretching,making membrane deformation crucial in processes like cell adhesion,migration,phagocytosis,and signal transduction.Within the plasma membrane are highly ordered dynamic structures formed by lipid molecules,known as“lipid rafts,”whose dynamic dissociation and reorganization are prerequisites for membrane deformation.Fluorescent probes have emerged as vital tools for studying these dynamic processes,offering a non-destructive,in situ,and real-time imaging method.By strategically designing these probes,researchers can image not only the microdomains of cell membranes but also explore more complex processes such as membrane fusion and fission.This review systematically summarizes the latest advancements in the application of fluorescent probes for cell membrane imaging.It also discusses the current challenges and provides insights into future research directions.We hope this review inspires further studies on the dynamic processes of complex cell membranes using fluorescent probes,ultimately advancing our understanding of the mechanisms underlying membrane dissociation,reorganization,fusion,and separation,and fostering research and therapeutic development for membrane-associated diseases.
基金The Guangdong Basic and Applied Basic Research Foundation(Grant#2023A1515010535).
文摘Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge construction.This paper presents a case study of a large-span prestressed concrete(PC)variable-section continuous girder bridge in China,proposing a feedback system for construction monitoring and establishing a finite element(FE)analysis model for the entire bridge.The alignment of the completed bridge adheres to the initial design expectations,with maximum displacement and pre-arch differences from the ideal state measuring 6.39 and 17.7 mm,respectively,which were less than the 20 mm limit required by the specification.Additionally,the stress monitoring showed that the maximum compressive stress was 10.44 MPa,which was 7.5%different from the finite element results,and better predicted the most unfavorable possible location.These results demonstrate that a scientifically rigorous construction monitoring and feedback system can ensure the safety of bridge construction and meet the expected construction standards.The findings presented in this paper provide valuable insights for bridge construction monitoring practices.