BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p...BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.展开更多
Polyacrylonitrile-based commercial carbon fibers(CFs)have garnered significant attention in mechanical applications because of their exceptional mechanical properties.However,their functional versatility relies heavil...Polyacrylonitrile-based commercial carbon fibers(CFs)have garnered significant attention in mechanical applications because of their exceptional mechanical properties.However,their functional versatility relies heavily on the structural intricacies of duplex carbon layers.Current modification approaches,though effective,are encumbered by complexity and cost,limiting widespread adoption across diverse fields.We herein present a straightforward modification strategy centered on regulating carbon layers to unlock the multifunctional potential of CFs.Our method leverages two common anions,Cl^(-)and SO_(4)^(2-),to facilitate oxidation reactions in CFs under robust alkali and high voltage conditions.Cl^(-)effectively activates carbon layers,while SO_(4)^(2-)facilitates layer movement.The electrocatalytic activities of the resultant CFs are enhanced,with state-of-the-art performance as supercapacitors and exceptional stability.Moreover,our approach achieves a groundbreaking milestone by bending and fusing CFs without using binders.This breakthrough can reduce the manufacturing costs of CF-based products.It also facilitates the development of novel microelectronic devices.展开更多
The potherb mustard Xuecai(XC)cultivar is a cruciferous vegetable that is popular either fresh or pickled.Due to the deep notches in the edges of leaves in mustard XC,this plant can be said to have multipinnately lobe...The potherb mustard Xuecai(XC)cultivar is a cruciferous vegetable that is popular either fresh or pickled.Due to the deep notches in the edges of leaves in mustard XC,this plant can be said to have multipinnately lobed leaves.The net photosynthesis of lobed leaves is significantly greater than that of simple leaves.However,the molecular mechanism of leaf shape variation has not been determined.Here,we used HiFi and Hi-C data to assemble the XC genome.The genome was 961.72 Mb in size,with a contig N50 value of 6.565 Mb.The XC genome was compared with four previously sequenced mustard genomes,and the genomic collinearity regions,SNPs,and indels were identified.Five BjRCO genes were found on chromosome(Chr.)A10 in potherb mustard XC when the BjRCO gene locus was compared against other sequenced B.juncea genomes.Segmental duplication was found to contribute to the BjRCO gene copy number.The transcript expression of BjRCO genes was greater in multipinnately lobed leaves than in sawtooth-like leaves.Together,these findings indicate that both the greater copy number and the expression level of BjRCO genes regulate leaf shape from simple to complex in B.juncea.Gene editing of the BjRCO gene from XC changed the leaf shape from multipinnately lobed to simple.The high-quality XC genome sequence not only provides new insight into B.juncea leaf-type genomics but also helps in deciphering leaf shape variation.Our study provides insights into the variation and evolution of important traits in Brassica plants through a comparative analysis of the sequenced genomes.展开更多
基金Supported by National Natural Science Foundation of China,No.81874390 and No.81573948Shanghai Natural Science Foundation,No.21ZR1464100+1 种基金Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.22S11901700the Shanghai Key Specialty of Traditional Chinese Clinical Medicine,No.shslczdzk01201.
文摘BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.
基金support from the Key-Area Research and Development Program of Guangdong Province(2019B111107002)the National Natural Science Foundation of China(52478266 and 52108231)+1 种基金the Basic and Applied Basic Research Fund of Guangdong Province(2023A1515012150 and 2023A1515012409)the Shenzhen Science and Technology Innovation Program(20220810140230001 and 20220810160453001).
文摘Polyacrylonitrile-based commercial carbon fibers(CFs)have garnered significant attention in mechanical applications because of their exceptional mechanical properties.However,their functional versatility relies heavily on the structural intricacies of duplex carbon layers.Current modification approaches,though effective,are encumbered by complexity and cost,limiting widespread adoption across diverse fields.We herein present a straightforward modification strategy centered on regulating carbon layers to unlock the multifunctional potential of CFs.Our method leverages two common anions,Cl^(-)and SO_(4)^(2-),to facilitate oxidation reactions in CFs under robust alkali and high voltage conditions.Cl^(-)effectively activates carbon layers,while SO_(4)^(2-)facilitates layer movement.The electrocatalytic activities of the resultant CFs are enhanced,with state-of-the-art performance as supercapacitors and exceptional stability.Moreover,our approach achieves a groundbreaking milestone by bending and fusing CFs without using binders.This breakthrough can reduce the manufacturing costs of CF-based products.It also facilitates the development of novel microelectronic devices.
基金supported by grants from the National Natural Science Foundation of China(32002056)the Science and Technology Research Key Project of Henan Province,China(242102111138)。
文摘The potherb mustard Xuecai(XC)cultivar is a cruciferous vegetable that is popular either fresh or pickled.Due to the deep notches in the edges of leaves in mustard XC,this plant can be said to have multipinnately lobed leaves.The net photosynthesis of lobed leaves is significantly greater than that of simple leaves.However,the molecular mechanism of leaf shape variation has not been determined.Here,we used HiFi and Hi-C data to assemble the XC genome.The genome was 961.72 Mb in size,with a contig N50 value of 6.565 Mb.The XC genome was compared with four previously sequenced mustard genomes,and the genomic collinearity regions,SNPs,and indels were identified.Five BjRCO genes were found on chromosome(Chr.)A10 in potherb mustard XC when the BjRCO gene locus was compared against other sequenced B.juncea genomes.Segmental duplication was found to contribute to the BjRCO gene copy number.The transcript expression of BjRCO genes was greater in multipinnately lobed leaves than in sawtooth-like leaves.Together,these findings indicate that both the greater copy number and the expression level of BjRCO genes regulate leaf shape from simple to complex in B.juncea.Gene editing of the BjRCO gene from XC changed the leaf shape from multipinnately lobed to simple.The high-quality XC genome sequence not only provides new insight into B.juncea leaf-type genomics but also helps in deciphering leaf shape variation.Our study provides insights into the variation and evolution of important traits in Brassica plants through a comparative analysis of the sequenced genomes.