As a burgeoning research field, ultrasound-responsive materials have attracted intense interest in healthcare research. However, the basic mechanism of sonochemical effect in the quasi-solid state is far from being we...As a burgeoning research field, ultrasound-responsive materials have attracted intense interest in healthcare research. However, the basic mechanism of sonochemical effect in the quasi-solid state is far from being well understood than those in the solution. Herein, we showcase mechanochemical transformations of europium(Ⅲ) complexes in a supramolecular hydrogel matrix. With the combination of labile terpyridine-europium complexes(TPY-Eu^(3+)) as mechanochromic moieties and an ultrasound-responsive fluorogen(URF) as a molecular tweezer, the hydrogel produces a notable fluorescence change in response to ultrasound. The mechanochemical transformation was elucidated by molecular dynamics(MD) simulations, and fully probed and evidenced by electrochemical experiments, X-ray photoelectron spectroscopy(XPS), and attenuated total reflectance-Fourier transform infrared(ATR-FTIR) spectroscopy.展开更多
Traditional fluorescence switching molecules achieving the state change between on and off states commonly based on UV irradiation. However, it is worth noting that UV irradiation is harmful to both the cancer cells a...Traditional fluorescence switching molecules achieving the state change between on and off states commonly based on UV irradiation. However, it is worth noting that UV irradiation is harmful to both the cancer cells and the normal cells. To achieve fluorescence switching under visible wavelength and avoid complicate molecular design, a fluorophore of 2,4,5,6-tetrakis(carbazol-9-yl)-1,3-dicyanobenzene(4Cz IPN) and a quencher of diarylethene(DAE) were physically incorporated within the biocompatible block copolymer poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)(PLGA-b-PEG) to form 4Cz IPNDAE nanoparticles(NPs) through flash nanoprecipitation(FNP). By using the FNP method, the NPs were prepared within milliseconds in a confined impingement jets dilution(CIJ-D) mixer. Quenching and recovery of fluorescence could achieve in the presence of DAE under 475 nm and 560 nm irradiation.Appropriate structure and fluorescent properties of the nanoparticles can be tuned by external conditions for their efficient fluorescence resonance energy transfer(FRET) in a kinetic stabilization process. This NPs formation process was further optimized by varying the dilution ratio, Reynolds number(Re) and polymer concentration to modulate the mixing and particle nucleation and growth process. The size and fluorescence switching properties of the NPs were systematically investigated in solution and in cellular uptake experiments. This work is anticipated to provide a simple and highly effective engineering strategy for the modulation of fluorescence switching nanoparticles and beneficial to its engineering application.展开更多
Life on Earth uses a common set of L-amino acids(L-aa)to construct proteins and D-nucleosides(D-Nu)to form nucleic acids,which serve as the carrier of genetic information.Herein,we reveal the in-trinsic mechanism of c...Life on Earth uses a common set of L-amino acids(L-aa)to construct proteins and D-nucleosides(D-Nu)to form nucleic acids,which serve as the carrier of genetic information.Herein,we reveal the in-trinsic mechanism of chiral selection of L-aa and D-Nu from the perspective of chemical origin of life.This work employed^(15)N-labeled L-aa and performed one-pot synthesis of nucleotide amidate of amino acid(N-aa-NMP)using equal amounts of L-^(15)N-aa and D-^(14)N-aa with D-/L-Nu in the aqueous solution of trimetaphosphate,generating L-^(15)N-aa-NMP and D-^(14)N-aa-NMP,respectively.The ^(31)P-NMR data indicated that L-aa was preferentially selected during the formation of N-aa-NMP in the presence of D-Nu.Surpris-ingly,D-aa was preferred over L-aa in the presence of L-Nu.Further analysis revealed that L-^(15)N-aa-D-NMP vs.D-^(14)N-aa-L-NMP and D-^(14)N-aa-D-NMP vs.L-^(15)N-aa-L-NMP were mirror isomers of each other,respec-tively.These data suggest that there could be a set of chiral systems opposite to that on Earth,which infers there might be a world of life that is a mirror image of the Earth.展开更多
基金supported by the National Key R&D Program of China(No.2018YFC0114900)National Natural Science Foundation of China(No.52103246,U1967217)+9 种基金Zhejiang Provincial Natural Science Foundation of China(Nos.LD22E050008,LD22A020002)China Postdoctoral Science Foundation(No.2021TQ0341,2020M671828)Ningbo Natural Science Foundation(No.2021J203,202003N4361)Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2019297)Key Research Program of Frontier Science,Chinese Academy of Sciences(No.QYZDB-SSW-SLH036)the Sino-German Mobility Program(No.M-0424)K.C.Wong Education Foundation(No.GJTD-2019–13)National Independent Innovation Demonstration Zone Shanghai Zhangjiang Major Projects(No.ZJZX2020014)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(No.SN-ZJU-SIAS-003)Director Foundation of Ningbo Institute of Materials Technology and Engineering。
文摘As a burgeoning research field, ultrasound-responsive materials have attracted intense interest in healthcare research. However, the basic mechanism of sonochemical effect in the quasi-solid state is far from being well understood than those in the solution. Herein, we showcase mechanochemical transformations of europium(Ⅲ) complexes in a supramolecular hydrogel matrix. With the combination of labile terpyridine-europium complexes(TPY-Eu^(3+)) as mechanochromic moieties and an ultrasound-responsive fluorogen(URF) as a molecular tweezer, the hydrogel produces a notable fluorescence change in response to ultrasound. The mechanochemical transformation was elucidated by molecular dynamics(MD) simulations, and fully probed and evidenced by electrochemical experiments, X-ray photoelectron spectroscopy(XPS), and attenuated total reflectance-Fourier transform infrared(ATR-FTIR) spectroscopy.
基金financially supported by the National Key Research and Development Program of the International Scientific and Technological Innovation Cooperation Project among Governments (2021YFE0100400)Science and Technology Innovation Action Plan of Shanghai (22501100500)the international One Belt One Road Collaboration Project of Shanghai (18490740300)。
文摘Traditional fluorescence switching molecules achieving the state change between on and off states commonly based on UV irradiation. However, it is worth noting that UV irradiation is harmful to both the cancer cells and the normal cells. To achieve fluorescence switching under visible wavelength and avoid complicate molecular design, a fluorophore of 2,4,5,6-tetrakis(carbazol-9-yl)-1,3-dicyanobenzene(4Cz IPN) and a quencher of diarylethene(DAE) were physically incorporated within the biocompatible block copolymer poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)(PLGA-b-PEG) to form 4Cz IPNDAE nanoparticles(NPs) through flash nanoprecipitation(FNP). By using the FNP method, the NPs were prepared within milliseconds in a confined impingement jets dilution(CIJ-D) mixer. Quenching and recovery of fluorescence could achieve in the presence of DAE under 475 nm and 560 nm irradiation.Appropriate structure and fluorescent properties of the nanoparticles can be tuned by external conditions for their efficient fluorescence resonance energy transfer(FRET) in a kinetic stabilization process. This NPs formation process was further optimized by varying the dilution ratio, Reynolds number(Re) and polymer concentration to modulate the mixing and particle nucleation and growth process. The size and fluorescence switching properties of the NPs were systematically investigated in solution and in cellular uptake experiments. This work is anticipated to provide a simple and highly effective engineering strategy for the modulation of fluorescence switching nanoparticles and beneficial to its engineering application.
基金supported by the National Natural Science Foundation of China (Nos.91856126,42003062,21778042 and 41876072)Scientific Research Grant of Ningbo University (No.215432000282)Ningbo Top Talent Project (No.215-432094250)。
文摘Life on Earth uses a common set of L-amino acids(L-aa)to construct proteins and D-nucleosides(D-Nu)to form nucleic acids,which serve as the carrier of genetic information.Herein,we reveal the in-trinsic mechanism of chiral selection of L-aa and D-Nu from the perspective of chemical origin of life.This work employed^(15)N-labeled L-aa and performed one-pot synthesis of nucleotide amidate of amino acid(N-aa-NMP)using equal amounts of L-^(15)N-aa and D-^(14)N-aa with D-/L-Nu in the aqueous solution of trimetaphosphate,generating L-^(15)N-aa-NMP and D-^(14)N-aa-NMP,respectively.The ^(31)P-NMR data indicated that L-aa was preferentially selected during the formation of N-aa-NMP in the presence of D-Nu.Surpris-ingly,D-aa was preferred over L-aa in the presence of L-Nu.Further analysis revealed that L-^(15)N-aa-D-NMP vs.D-^(14)N-aa-L-NMP and D-^(14)N-aa-D-NMP vs.L-^(15)N-aa-L-NMP were mirror isomers of each other,respec-tively.These data suggest that there could be a set of chiral systems opposite to that on Earth,which infers there might be a world of life that is a mirror image of the Earth.