期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Synchrotron-radiation computed tomography of the water drop penetration time test on hydrophobic soils
1
作者 Clara M.Toffoli Marius Milatz +3 位作者 Julian P.Moosmann Thomas Jentschke felix beckmann Jürgen Grabe 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5111-5121,共11页
The water drop penetration time(WDPT)test consists of placing water drops on a material's surface in order to evaluate how long it takes to penetrate the pores.It is used to evaluate the hydrophobicity of material... The water drop penetration time(WDPT)test consists of placing water drops on a material's surface in order to evaluate how long it takes to penetrate the pores.It is used to evaluate the hydrophobicity of materials.This study aims at investigating in more detail the soil-water interaction during the test,exposing its mechanism.For that,a model soil named Hamburg Sand was coated with a hydrophobic fluoropolymer and then a WDPT test was performed while computed tomography(CT)images were taken.Tomography experiments were performed at the P07 high-energy materials science(HEMS)beamline,operated by Helmholtz–Zentrum Hereon,at the storage ring PETRA III at the Deutsches Elektronen-Synchrotron(DESY)in Hamburg.Using synchrotron radiation,a tomogram can be obtained in about 10 min,way less time than regular laboratory X-ray sources usually owned by universities.The faster imaging enables the observation of the drop penetration during time and thus provides insight into the dynamics of the process.After that,digital discrete image correlation is performed to track the displacement of the grains throughout time.From the results one can observe that,as the drop is absorbed at the material's surface,the grains directly around the droplet base are dragged to the liquid-air interface around the drop,revealing grain kinematics during capillary interactions of the penetrating liquid and sand grains. 展开更多
关键词 Hydrophobic soil Synchrotron tomography Water drop penetration time(WDPT)test
在线阅读 下载PDF
Multi-modal investigation of the bone micro- and ultrastructure, and elemental distribution in the presence of Mg-xGd screws at mid-term healing stages
2
作者 Kamila Iskhakova Hanna Cwieka +20 位作者 Svenja Meers Heike Helmholz Anton Davydok Malte Storm Ivo Matteo Baltruschat Silvia Galli Daniel Pröfrock Olga Will Mirko Gerle Timo Damm Sandra Sefa Weilue He Keith MacRenaris Malte Soujon felix beckmann Julian Moosmann Thomas O'Hallaran Roger J.Guillory II D.C.Florian Wieland Berit Zeller-Plumhoff Regine Willumeit-Römer 《Bioactive Materials》 SCIE CSCD 2024年第11期657-671,共15页
Magnesium(Mg)–based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing,e.g.as a suture anchor.Due to their mechanical properties and biocompat... Magnesium(Mg)–based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing,e.g.as a suture anchor.Due to their mechanical properties and biocompatibility,they may replace titanium or stainless-steel implants,commonly used in orthopedic field.Nevertheless,patient safety has to be assured by finding a long-term balance between metal degradation,osseointegration,bone ultrastructure adaptation and element distribution in organs.In order to determine the implant behavior and its influence on bone and tissues,we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone.The implants were present in rat tibia for 10,20 and 32 weeks before sacrifice of the animal.Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal,degradation layer and bone structure.Additionally,X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface.Finally,with element specific mass spectrometry,the elements and their accumulation in the main organs and tissues are traced.The results show that Mg-xGd implants degrade in vivo under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks.No accumulation of Mg and Gd was observed in selected organs,except for the interfacial bone after 8 months of healing.Thus,we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants. 展开更多
关键词 Biodegradable implants Bone ultrastructure Degradation Mg-based alloys
原文传递
Degradation behavior and osseointegration of Mg-Zn-Ca screws in different bone regions of growing sheep:a pilot study 被引量:2
3
作者 Romy Marek Hanna C´wieka +12 位作者 Nicholas Donohue Patrick Holweg Julian Moosmann felix beckmann Iva Brcic Uwe Yacine Schwarze Kamila Iskhakova Marwa Chaabane Sandra Sefa Berit Zeller-Plumhoff Annelie-Martina Weinberg Regine Willumeit-Ro¨mer Nicole Gabriele Sommer 《Regenerative Biomaterials》 SCIE EI CSCD 2023年第1期1-14,共14页
Magnesium(Mg)-based implants are highly attractive for the orthopedic field and may replace titanium(Ti)as support for fracture healing.To determine the implant-bone interaction in different bony regions,we implanted ... Magnesium(Mg)-based implants are highly attractive for the orthopedic field and may replace titanium(Ti)as support for fracture healing.To determine the implant-bone interaction in different bony regions,we implanted Mg-based alloy ZX00(Mg<0.5 Zn<0.5 Ca,in wt%)and Ti-screws into the distal epiphysis and distal metaphysis of sheep tibiae.The implant degradation and osseointegration were assessed in vivo and ex vivo after 4,6 and 12weeks,using a combination of clinical computed tomography,medium-resolution micro computed tomography(mCT)and high-resolution synchrotron radiation mCT(SRmCT).Implant volume loss,gas formation and bone growth were evaluated for both implantation sites and each bone region independently.Additionally,histological analysis of bone growth was performed on embedded hard-tissue samples.We demonstrate that in all cases,the degradation rate of ZX00-implants ranges between 0.23 and 0.75mm/year.The highest degradation rates were found in the epiphysis.Bone-to-implant contact varied between the time points and bone types for both materials.Mostly,bone-volume-to-total-volume was higher around Ti-implants.However,we found an increased cortical thickness around the ZX00-screws when compared with the Tiscrews.Our results showed the suitability of ZX00-screws for implantation into the distalmeta-and epiphysis. 展开更多
关键词 biodegradable implants magnesium-based alloys computed tomography Mg-Zn-Ca SHEEP HISTOLOGY
原文传递
On the material dependency of peri-implant morphology and stability in healing bone 被引量:1
4
作者 Stefan Bruns Diana Krüger +7 位作者 Silvia Galli D.C.Florian Wieland Jorg U.Hammel felix beckmann Ann Wennerberg Regine Willumeit-Romer Berit Zeller-Plumhoff Julian Moosmann 《Bioactive Materials》 SCIE CSCD 2023年第10期155-166,共12页
The microstructural architecture of remodeled bone in the peri-implant region of screw implants plays a vital role in the distribution of strain energy and implant stability.We present a study in which screw implants ... The microstructural architecture of remodeled bone in the peri-implant region of screw implants plays a vital role in the distribution of strain energy and implant stability.We present a study in which screw implants made from titanium,polyetheretherketone and biodegradable magnesium-gadolinium alloys were implanted into rat tibia and subjected to a push-out test four,eight and twelve weeks after implantation.Screws were 4 mm in length and with an M2 thread.The loading experiment was accompanied by simultaneous three-dimensional imaging using synchrotron-radiation microcomputed tomography at 5μm resolution.Bone deformation and strains were tracked by applying optical flow-based digital volume correlation to the recorded image sequences.Implant stabilities measured for screws of biodegradable alloys were comparable to pins whereas non-degradable biomaterials experienced additional mechanical stabilization.Peri-implant bone morphology and strain transfer from the loaded implant site depended heavily on the biomaterial utilized.Titanium implants stimulated rapid callus formation displaying a consistent monomodal strain profile whereas the bone volume fraction in the vicinity of magnesium-gadolinium alloys exhibited a minimum close to the interface of the implant and less ordered strain transfer.Correlations in our data suggest that implant stability benefits from disparate bone morphological properties depending on the biomaterial utilized.This leaves the choice of biomaterial as situational depending on local tissue properties. 展开更多
关键词 Biodegradable implant materials Bone mechanical testing Implant stability Synchrotron micro-computed tomography imaging Digital volume correlation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部