Tuning the metal-oxide interface to achieve optimal catalytic performance represents a classic yet fast-growing area in catalysis research.This work demonstrated that the decoration of CeO_(2) clusters onto Ni particl...Tuning the metal-oxide interface to achieve optimal catalytic performance represents a classic yet fast-growing area in catalysis research.This work demonstrated that the decoration of CeO_(2) clusters onto Ni particles creates electron-enriched Ni sites at the Ni-CeO_(2) interface with highly efficient CO methanation,by kinetics,chemical titration,and a series of in situ/operando spectroscopic characterizations.These electron-enriched Ni atoms facilitate the back-donation of electrons into the orbital of CO and thus reduce the reaction barrier of CH_(4) formation,but do not alter the catalytic steps and their kinetic relevance as well as the evolution of surface intermediates during CO methanation.The amount of electron-enriched Ni atoms increases significantly to a maximum value and then decreases as the content of CeO_(2) increases,leading the formation rates of CH_(4) to increase in a volcano-type relation with CeO_(2) contents in xCeNi/Al_(2)O_(3) catalysts.These insights provide a comprehensive understanding of the nature and the role of the metal-oxide interface and could potentially guide the rational design of highly efficient oxide-supported catalysts for CO methanation.展开更多
文摘Tuning the metal-oxide interface to achieve optimal catalytic performance represents a classic yet fast-growing area in catalysis research.This work demonstrated that the decoration of CeO_(2) clusters onto Ni particles creates electron-enriched Ni sites at the Ni-CeO_(2) interface with highly efficient CO methanation,by kinetics,chemical titration,and a series of in situ/operando spectroscopic characterizations.These electron-enriched Ni atoms facilitate the back-donation of electrons into the orbital of CO and thus reduce the reaction barrier of CH_(4) formation,but do not alter the catalytic steps and their kinetic relevance as well as the evolution of surface intermediates during CO methanation.The amount of electron-enriched Ni atoms increases significantly to a maximum value and then decreases as the content of CeO_(2) increases,leading the formation rates of CH_(4) to increase in a volcano-type relation with CeO_(2) contents in xCeNi/Al_(2)O_(3) catalysts.These insights provide a comprehensive understanding of the nature and the role of the metal-oxide interface and could potentially guide the rational design of highly efficient oxide-supported catalysts for CO methanation.