期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Interfacial chemistry and structural engineering modified carbon fibers for stable sodium metal anodes
1
作者 Chenxiao Chu Chunting Wang +5 位作者 Weisong Meng feipeng cai Bo Wang Nana Wang Jian Yang Zhongchao Bai 《Carbon Energy》 CSCD 2024年第12期205-216,共12页
Sodium(Na)metal stands out as a highly promising anode material for highenergy-density Na batteries owing to its abundant resources and exceptional theoretical capacity at low redox potential.Nevertheless,the uncontro... Sodium(Na)metal stands out as a highly promising anode material for highenergy-density Na batteries owing to its abundant resources and exceptional theoretical capacity at low redox potential.Nevertheless,the uncontrolled growth of Na dendrites and the accompanying volumetric changes during the plating/stripping process lead to safety concerns and poor electrochemical performances.This study introduces nitrogen and oxygen co-doped carbon nanofiber networks wrapped carbon felt(NO-CNCF),serving as Na deposition skeletons to facilitate a highly reversible Na metal anode.The NO-CNCF framework with uniformly distributed“sodiophilic”functional groups,nanonetwork protuberances,and cross-linked network scaffold structure can avoid charge accumulation and facilitate the dendrite-free Na deposition.Benefiting from these features,the NO-CNCF@Na symmetrical cells demonstrate notable enhancements in cycling stability,achieving 4000 h cycles at 1mA cm^(−2) for 1 mAh cm^(−2) and 2400 h cycles at 2mA cm^(−2) for 2 mAh cm^(−2) with voltage overpotential of approximately 6 and 10 mV,respectively.Furthermore,the NVP//NO-CNCF@Na full cells achieve stable cycling performance and favorable rate capability.This investigation offers novel insights into fabricating a“sodiophilic”matrix with a multistage structure toward high-performance Na metal batteries. 展开更多
关键词 carbon felt dendrite free multistage structures Na metal anode sodiophilic
在线阅读 下载PDF
A USM-Θ two-phase turbulence model for simulating dense gas-particle flows 被引量:10
2
作者 Yong Yu Lixing Zhou +1 位作者 Baoguo Wang feipeng cai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期228-234,共7页
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kin... A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot. 展开更多
关键词 TURBULENCE Two-phase flow Second-ordermoment model
在线阅读 下载PDF
Two-phase turbulence models for simulating dense gas-particle flows 被引量:1
3
作者 Lixing Zhou Yong Yu +1 位作者 feipeng cai Zhuoxiong Zeng 《Particuology》 SCIE EI CAS CSCD 2014年第5期100-107,共8页
The two-fluid model is widely adopted in simulations of dense gas-particle flows in engineering facili- ties. Present two-phase turbulence models for two-fluid modeling are isotropic. However, turbulence in actual gas... The two-fluid model is widely adopted in simulations of dense gas-particle flows in engineering facili- ties. Present two-phase turbulence models for two-fluid modeling are isotropic. However, turbulence in actual gas-particle flows is not isotropic. Moreover, in these models the two-phase velocity correlation is closed using dimensional analysis, leading to discrepancies between the numerical results, theoretical analysis and experiments. To rectify this problem, some two-phase turbulence models were proposed by the authors and are applied to simulate dense gas-particle flows in downers, risers, and horizontal channels; Experimental results validate the simulation results. Among these models the USM-O and the two-scale USM models are shown to give a better account of both anisotropic particle turbulence and particle-particle collision using the transport equation model for the two-phase velocity correlation. 展开更多
关键词 Dense gas-particle flows Two-phase turbulence models Anisotropic turbulence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部