Biomaterials with exceptional performance are crucial for addressing the challenges of complex bone regeneration.Compared with traditional three-dimensional scaffolds,injectable microspheres enable new strategies for ...Biomaterials with exceptional performance are crucial for addressing the challenges of complex bone regeneration.Compared with traditional three-dimensional scaffolds,injectable microspheres enable new strategies for the treatment of irregular bone defects.Biodegradable poly(lactic-co-glycolic acid)has found widespread applications as microcarriers of drugs,proteins,and other active macromolecules.Applied to the surface of poly(lactic-co-glycolic acid)cage-like structures(PLGA-CAS),hydroxyapatite(HA)effectively reduces inflammation while enhancing biological effects.In this study,we loaded the surface of PLGA-CAS with micro-and nano-hydroxyapatite particles,referred to asμHA/PLGA-CAS and nHA/PLGA-CAS,respectively.Subsequently,their material characteristics and biological effects were assessed.The incorporation of hydroxyapatite onto PLGA-CAS resulted in enhanced surface roughness and hydrophilicity,coupled with improved thermal stability and delayed degradation.Furthermore,μHA/PLGACAS induced osteogenic differentiation of osteoblast precursor cells,while nHA/PLGACAS improved endothelial cell adhesion and stimulated angiogenic differentiation in vitro.Collectively,these findings suggest thatμHA/PLGA-CAS and nHA/PLGA-CAS,each with distinct characteristics,hold significant potential for application as microcarriers in various biomedical contexts.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:22172120,52071277。
文摘Biomaterials with exceptional performance are crucial for addressing the challenges of complex bone regeneration.Compared with traditional three-dimensional scaffolds,injectable microspheres enable new strategies for the treatment of irregular bone defects.Biodegradable poly(lactic-co-glycolic acid)has found widespread applications as microcarriers of drugs,proteins,and other active macromolecules.Applied to the surface of poly(lactic-co-glycolic acid)cage-like structures(PLGA-CAS),hydroxyapatite(HA)effectively reduces inflammation while enhancing biological effects.In this study,we loaded the surface of PLGA-CAS with micro-and nano-hydroxyapatite particles,referred to asμHA/PLGA-CAS and nHA/PLGA-CAS,respectively.Subsequently,their material characteristics and biological effects were assessed.The incorporation of hydroxyapatite onto PLGA-CAS resulted in enhanced surface roughness and hydrophilicity,coupled with improved thermal stability and delayed degradation.Furthermore,μHA/PLGACAS induced osteogenic differentiation of osteoblast precursor cells,while nHA/PLGACAS improved endothelial cell adhesion and stimulated angiogenic differentiation in vitro.Collectively,these findings suggest thatμHA/PLGA-CAS and nHA/PLGA-CAS,each with distinct characteristics,hold significant potential for application as microcarriers in various biomedical contexts.