Recycling millions of metric tons of spent LiFePO_(4) batteries would benefit human health while reducing resource depletion and environmental pollution.However,recovering individual elements from the spent batteries ...Recycling millions of metric tons of spent LiFePO_(4) batteries would benefit human health while reducing resource depletion and environmental pollution.However,recovering individual elements from the spent batteries without generating waste is challenging.Here,we present a distinctive approach for recycling spent LiFePO_(4) batteries at room temperature,where water is the only leaching agent consumed.FePO_(4) and lithium intercalated graphite act as a precursor material for selectively extracting lithium,iron,and phosphorus through charging the LiFePO_(4) batteries to the delithiated state.NaOH solution extracted Fe from FePO_(4) within 30 min and regenerated without consumption,similar to a catalyst.Under the optimal leaching conditions(1 mol·L^(-1) NaOH,0.5 h,NaOH/Fe molar ratio of 4.5),Fe and P leaching efficiencies achieved 89.1%and 99.2%,respectively.The methodology reflected in this research reduced the material cost per kg cathode material to a fraction of previously published reports,only occupies 6.13%of previous reports.In addition,the method improved the battery recycling revenue calculated by the EverBatt model by 2.31 times and 1.94 times over pyrometallurgical and hydrometallurgical methods.The proposed method allows for the convenient recovery of the elemental components of spent LiFePO_(4) batteries.展开更多
The burgeoning growth of lithium-ion batteries(LIBs)has caused great concern for the uninterrupted supply of lithium.Although spent LIBs are a richer source of lithium than the natural resources from ore,salt lake bri...The burgeoning growth of lithium-ion batteries(LIBs)has caused great concern for the uninterrupted supply of lithium.Although spent LIBs are a richer source of lithium than the natural resources from ore,salt lake brine,or seawater,traditional methodology for recycling of lithium in spent LIBs suffers from costly energy consumption and the generation of unfriendly environmental pollutants.展开更多
Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are propos...Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.展开更多
基金the Key-Area Research and Development Program of Guangdong Province(No.2020B090919003)the National Natural Science Foundation of China(No.51872157)+2 种基金Shenzhen Technical Plan Project(Nos.JCYJ20170412170911187 and JCYJ20170817161753629)Guangdong Technical Plan Project(No.2017B090907005)the Key Project of Core Technology Tackling of Guangdong City of Dongguan(No.2019622119003)。
文摘Recycling millions of metric tons of spent LiFePO_(4) batteries would benefit human health while reducing resource depletion and environmental pollution.However,recovering individual elements from the spent batteries without generating waste is challenging.Here,we present a distinctive approach for recycling spent LiFePO_(4) batteries at room temperature,where water is the only leaching agent consumed.FePO_(4) and lithium intercalated graphite act as a precursor material for selectively extracting lithium,iron,and phosphorus through charging the LiFePO_(4) batteries to the delithiated state.NaOH solution extracted Fe from FePO_(4) within 30 min and regenerated without consumption,similar to a catalyst.Under the optimal leaching conditions(1 mol·L^(-1) NaOH,0.5 h,NaOH/Fe molar ratio of 4.5),Fe and P leaching efficiencies achieved 89.1%and 99.2%,respectively.The methodology reflected in this research reduced the material cost per kg cathode material to a fraction of previously published reports,only occupies 6.13%of previous reports.In addition,the method improved the battery recycling revenue calculated by the EverBatt model by 2.31 times and 1.94 times over pyrometallurgical and hydrometallurgical methods.The proposed method allows for the convenient recovery of the elemental components of spent LiFePO_(4) batteries.
基金financially supported by the Key-Area Research and Development Program of Guangdong Province (No.2020B090919003)the National Natural Science Foundation of China (No.51872157)+2 种基金Shenzhen Technical Plan Project (Nos.JCYJ20170412170911187 and JCYJ20170817161753629)Guangdong Technical Plan Project (No.2017B090907005)the Key Project of Core Technology Tackling of Guangdong City of Dongguan (No.2019622119003)
文摘The burgeoning growth of lithium-ion batteries(LIBs)has caused great concern for the uninterrupted supply of lithium.Although spent LIBs are a richer source of lithium than the natural resources from ore,salt lake brine,or seawater,traditional methodology for recycling of lithium in spent LIBs suffers from costly energy consumption and the generation of unfriendly environmental pollutants.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB932400)the National Natural Science Foundation of China(Grant No.51772167)+1 种基金the China Postdoctoral Science Foundation(Grant No.2016M591169)the Shenzhen Municipal Basic Research Project,China(Grant No.JCYJ20170412171311288)
文摘Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.