Since the outbreak of the world-wide novel coronavirus pandemic,crowd counting in public areas,such as in shopping centers and in commercial streets,has gained popularity among public health administrations for preven...Since the outbreak of the world-wide novel coronavirus pandemic,crowd counting in public areas,such as in shopping centers and in commercial streets,has gained popularity among public health administrations for preventing the crowds from gathering.In this paper,we propose a novel adaptive method for crowd counting based on Wi-Fi channel state information(CSI)by using common commercial wireless routers.Compared with previous researches on device-free crowd counting,our proposed method is more adaptive to the change of environ-ment and can achieve high accuracy of crowd count estimation.Because the dis-tance between access point(AP)and monitor point(MP)is typically non-fixed in real-world applications,the strength of received signals varies and makes the tra-ditional amplitude-related models to perform poorly in different environments.In order to achieve adaptivity of the crowd count estimation model,we used convo-lutional neural network(ConvNet)to extract features from correlation coefficient matrix of subcarriers which are insensitive to the change of received signal strength.We conducted experiments in university classroom settings and our model achieved an overall accuracy of 97.79%in estimating a variable number of participants.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.61802196,url:http://www.nsfc.gov.cn/)Jiangsu Provincial Government Scholarship for Studying Abroad+1 种基金The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)NUIST Students’Platform for Innovation and Entrepreneurship Training Program(Grant No.202010300080Y,url:http://sjjx.nuist.edu.cn:81/CXCY/NUIST/).
文摘Since the outbreak of the world-wide novel coronavirus pandemic,crowd counting in public areas,such as in shopping centers and in commercial streets,has gained popularity among public health administrations for preventing the crowds from gathering.In this paper,we propose a novel adaptive method for crowd counting based on Wi-Fi channel state information(CSI)by using common commercial wireless routers.Compared with previous researches on device-free crowd counting,our proposed method is more adaptive to the change of environ-ment and can achieve high accuracy of crowd count estimation.Because the dis-tance between access point(AP)and monitor point(MP)is typically non-fixed in real-world applications,the strength of received signals varies and makes the tra-ditional amplitude-related models to perform poorly in different environments.In order to achieve adaptivity of the crowd count estimation model,we used convo-lutional neural network(ConvNet)to extract features from correlation coefficient matrix of subcarriers which are insensitive to the change of received signal strength.We conducted experiments in university classroom settings and our model achieved an overall accuracy of 97.79%in estimating a variable number of participants.