The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate elect...The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate electrolytes,cou pled with the formation of unstable solid electrolyte interphases(SEI),exacerbate the degradation of LMB performance at high current densities.Herein,we propose a versatile electrolyte design strategy that incorporates cyclohexyl methyl ether(CME)as a co-solvent to reshape the Li^(+)solvation environment by the steric-hindrance effect of bulky molecules and their competitive coordination with other solvent molecules.Simulation calculations and spectral analysis demonstrate that the addition of CME molecules reduces the involvement of other solvent molecules in the Li solvation sheath and promotes the formation of Li^(+)-PF_(6)^(-)coordination,thereby accelerating Li^(+)transport kinetics.Additionally,this electrolyte composition improves Li^(+)desolvation kinetics and fosters the formation of inorganic-rich SEI,ensuring cycle stability under fast charging.Consequently,the Li‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery with the modified electrolyte retains 82% of its initial capacity after 463 cycles at 1 C.Even under the extreme fast-charging condition of 5 C,the battery can maintain 80% capacity retention after 173 cycles.This work provides a promising approach for the development of highperformance LMBs by modulating solvation environment of electrolytes.展开更多
To the editor:Social communication impairment(SCI)is a core symptom of autism spectrum disorder(ASD),and evidence-based interventions targeting this domain remain limited.In the past decade,repetitive transcranial mag...To the editor:Social communication impairment(SCI)is a core symptom of autism spectrum disorder(ASD),and evidence-based interventions targeting this domain remain limited.In the past decade,repetitive transcranial magnetic stimulation(rTMS),one of the most commonly applied non-invasive neurostimulation techniques,has shown efficacy in treating neuropsychiatric disorders,such as depression.展开更多
Tungsten inert gas(TIG)welding and laser beam welding(LBW)were employed on as-cast and as-forged Mg−8Li−3Al−2Zn−0.5Y(LAZ832-0.5Y)alloys to investigate their weldability.The microstructure and mechanical properties of ...Tungsten inert gas(TIG)welding and laser beam welding(LBW)were employed on as-cast and as-forged Mg−8Li−3Al−2Zn−0.5Y(LAZ832-0.5Y)alloys to investigate their weldability.The microstructure and mechanical properties of solid solution treated samples were investigated for the purpose of further strength improvement,which were treated at 350℃ for 4 h.The ultimate tensile strength(UTS)and yield strength(YS)of the optimal TIG as-cast alloy welding joint were 159 and 122 MPa,which were obtained under the welding current of 80 A,and were lower than the UTS(184 MPa)and YS(146 MPa)of the optimal LBW as-forged welding joint under the power of 2.1 kW/2.0 kW double-side welding.After the solid solution treatment,on the one hand,the growth ofα-Mg grains in the fusion zone(FZ),heat affected zone(HAZ)and base metal(BM)of both the TIG and LBW welding joints was insignificant.On the other hand,the larger Al_(2)Y phases were still present,while the much smaller white AlLi particles were dissolved into the matrix,leading to the solid solution strengthening of the welding joints.As a result,the UTS and YS of the TIG welding joint respectively increased to 216 and 188 MPa after solid solution treatment,and those of the LBW welding joint only increased to 211 and 160 MPa,respectively.展开更多
As a universal casting Mg-RE alloy,Mg-6Gd-3Y-Zr(GW63K,wt.%)alloy exhibits superior strength-ductility synergy and holds significant potential for engineering applications.In this study,the GW63K alloy is produced usin...As a universal casting Mg-RE alloy,Mg-6Gd-3Y-Zr(GW63K,wt.%)alloy exhibits superior strength-ductility synergy and holds significant potential for engineering applications.In this study,the GW63K alloy is produced using the laser powder bed fusion(LPBF)additive manufacturing(AM)process for the first time.The printability,microstructure characteristics,and post-heat treatment conditions of the GW63K alloy are systematically investigated.The as-built GW63K samples demonstrate high relative densities exceeding 99.6%and exhibit no macroscopic and microscopic cracking across a wide range of process parameters,indicating excellent printability.An exceptional heterogeneous microstructure is observed in the as-built GW63K alloy,comprising coarse columnar grains,fine equiaxed grains with an average grain size of 21.72μm,uniformly distributed nano-sized Mg_(24)(Gd,Y)_(5)secondary phase,and numerous dislocations.Consequently,the as-built GW63K alloy displays enhanced tensile strengths and ductility compared to the as-cast alloy,with yield strength(YS),ultimate tensile strength(UTS)and elongation(EL)values of 218±4 MPa,284±5 MPa and 11.9±1.6%respectively.Additionally,due to the absence of coarse micron-sized secondary phase,a specific direct aging(T5)heat treatment regime at 200℃for 128 h is optimized for the as-built GW63K alloy to introduce dense and dispersedβ’aging precipitates.This T5 treatment surpasses the conventional solution plus aging(T6)heat treatment in enhancing mechanical properties.The LPBF-T5 GW63K alloy exhibits YS,UTS and EL values of 293±6 MPa,359±4 MPa and 2.9±0.7%,respectively.Notably,the YS of the LPBF-T5 alloy represents the highest value for the GW63K alloy,even surpassing that of the extrusion-T5 alloy.This study indicates that the GW63K alloy is a highly promising material for manufacturing near-net-shape high-strength Mg alloy components with intricate geometries using LPBF.展开更多
The influence of refining flux composition,refining time,refining temperature,and addition amount on the microstructure and mechanical properties of Mg-9Li-3Al-1Zn alloy was investigated with orthogonal experimental d...The influence of refining flux composition,refining time,refining temperature,and addition amount on the microstructure and mechanical properties of Mg-9Li-3Al-1Zn alloy was investigated with orthogonal experimental design.The flux purification process for Mg-Li alloys was optimized and the most effective ternary flux composition was identified.Results indicate that flux purification significantly mitigates Li loss during smelting by forming a protective surface layer that reduces Li oxidation and evaporation.The optimal flux composition is LiCl:LiF:CaF_(2)in a 3:1:2 mass ratio,with a flux addition of 3%,refining temperature of 720°C,and holding time of 10 min.The elongation of alloy improves to 16.2% after refinement,while the enhancement in strength remains marginal.展开更多
Diaphragma juglandis(D.juglandis)Fructus is a brownish lamellar structure located between walnut kernels.As a traditional Chinese herbal medicine,it exhibits therapeutic effects including spleen-strengthening,kidney c...Diaphragma juglandis(D.juglandis)Fructus is a brownish lamellar structure located between walnut kernels.As a traditional Chinese herbal medicine,it exhibits therapeutic effects including spleen-strengthening,kidney consolidation,astringency,diuresis,and heat-clearing.In this study,the polyphenolic constituents of D.juglandis and its functional instant tea were investigated in this study.Three polyphenolic compounds were isolated from 70%ethanol extract of D.juglandis Fructus as 2-methoxy juglone,regiolone and quercetin.The HPLC method was established for determination of the content of quercetin in the instant tea samples under the premise that the methodology was verifi ed to meet the standard requirements.The preparation process of D.juglandis Fructus instant tea was optimized through single factor experiments and Box-Behnken design-response surface methodology and the optimal conditions were determined as follows:feed rate of 10 mL/min,inlet temperature of 151℃,andβ-cyclodextrin addition of 9%.Then the antioxidant activity of each sample was evaluated using DPPH and ABTS radical scavenging assays.The results showed that the quercetin had significant antioxidant activity.The instant tea group demonstrated superior antioxidant effects compared to the extracts group at 50,200,and 800μg/mL(P<0.001),likely due to the optimized spray-drying process,which might have enhanced the solubility,stability,and bioavailability of the active compounds.The results provided critical foundational data for the deep processing and comprehensive utilization of D.juglandis Fructus.展开更多
This study investigated the effects of chlorine-based fertilizers under varying nitrogen solution concentrations in a soilless culture system. The experiment included four nitrogen solution concentration levels, with ...This study investigated the effects of chlorine-based fertilizers under varying nitrogen solution concentrations in a soilless culture system. The experiment included four nitrogen solution concentration levels, with nitrogen concentrations of 6 mmol/L (C1), 12 mmol/L (C2), 18 mmol/L (C3), and 24 mmol/L (C4). Each nutrient concentration level was further divided into four chloride ion treatments (R1, R2, R3, and R4), where 100%, 60%, 33%, and 0% of the NH4+ and K+ ions were derived from NH4Cl and KCl, respectively. The length, surface area and volume of root were significantly higher by 25.3%~136.9%, 40.1%~173.1%, 27.9%~178.0%, respectively, in the R4 treatment than in the R1 and R2 treatments at flowering stage. The aboveground biomass and yield in the R4 treatment were significantly higher, by approximately 15.6%~43.5% and 16.6%~28.6%, respectively, than in the R1, R2, and R3 treatments at the picking stage. The C3 and C4 treatments significantly decreased biomass and yield by 31.9%~50.2% and 20.7%~50.5%, respectively, compared to the C1 and C2 treatments at the picking stage. Besides, the higher nutrient solution increased the incidence of blossom-end rot. In conclusion, high concentrations of chloride ions in nutrient solutions, especially when the Cl− concentration exceeded 10 mmol/L, have been shown to inhibit tomato growth in soilless culture systems. Therefore, replacing sulfur-based fertilizers by chlorine-based fertilizers is not recommended for tomato production under the studied conditions.展开更多
Background:Hemorrhagic expansion into the fourth ventricle is an independent risk factor for poor outcomes in intraventricular hemorrhage(IVH)patients.However,to date,available animal models of IVH are limited to mode...Background:Hemorrhagic expansion into the fourth ventricle is an independent risk factor for poor outcomes in intraventricular hemorrhage(IVH)patients.However,to date,available animal models of IVH are limited to models of supratentorial ventricular hemorrhage,and there are no specific models of fourth ventricle hemorrhage.This limitation hinders comprehensive basic research and the understanding of the pathophysiological changes that occur following fourth ventricle hemorrhage.Therefore,the development of an animal model of fourth ventricle hemorrhage is highly important.Methods:In this study,a novel rat model of fourth ventricle hemorrhage was established via autologous blood injection through the foramen of Magendie.Anesthetized rats were positioned in a stereotaxic apparatus with their heads tilted downward at an angle of approximately 20°relative to the vertical axis.A needle was inserted through the foramen,and autologous blood obtained from the rat's heart was injected into the fourth ventricle via a microinfusion pump.Systematic evaluations of the model were conducted using small-animal magnetic resonance imaging,histopathological analysis,and neurological function assessment.Results:The rats developed stable and reproducible fourth ventricle hematomas and ventricular dilation.They also exhibited acute-phase hydrocephalus and pathological features of perilesional brain tissue injury,with observed neurological deficits comparable to patients with fourth ventricle hemorrhage.Conclusion:This model successfully recapitulates the clinicopathological and pathophysiological characteristics of patients with fourth ventricle hemorrhage and can be utilized for further investigation into the pathophysiological mechanisms underlying posthemorrhagic hydrocephalus and perilesional brainstem tissue injury.展开更多
In situ growth of co-catalysts on BiVO_(4)(BVO)to enhance photoelectrochemical(PEC)water splitting performance has been extensively reported.However,the understanding of the synergistic effects among various elements,...In situ growth of co-catalysts on BiVO_(4)(BVO)to enhance photoelectrochemical(PEC)water splitting performance has been extensively reported.However,the understanding of the synergistic effects among various elements,especially at the interface between the semiconductor and cocatalyst,has received insufficient attention.In this study,we report a Co,Ni and Mn trimetallic fluoride-modified BVO photoanode featuring a unique interfacial chemical bond(V-F).Under AM 1.5 G illumination,an exciting photocurrent density of 6.05 mA cm^(-2)was achieved at 1.23 V vs.RHE by the integrated BVO/CoNi_(0.18)Mn_(0.12)(OH)_(x)F photoanode and over 98%of the initial photocurrent was maintained after 10 h of photoelectrolysis.Control experiments and theoretical calculations demonstrate that the V-F interfacial bond stabilizes the Co^(2+)active sites.It serves as a transmission gear,interlinking the migration of interfacial charge and the regeneration of cocatalyst,endowing the photoanode with significant activity and stability.Furthermore,we have systematically elucidated the role of the individual Co,Ni,and Mn components in the synergistic cocatalyst layer.The interfacial modification provides novel insights into developing advanced photoanodes towards PEC water splitting.展开更多
Selective electrocatalytic semi-hydrogenation(ECSH)of alkynes in water using Cu catalysts is highly relevant for the production of value-added chemicals.However,achieving high olefin selectivity still poses extreme ch...Selective electrocatalytic semi-hydrogenation(ECSH)of alkynes in water using Cu catalysts is highly relevant for the production of value-added chemicals.However,achieving high olefin selectivity still poses extreme challenges due to the susceptibility of the copper cathode in a reduction environment.Herein,a small molecule modulation electrodeposition strategy is introduced that regulates the structure of Cubased materials through modification with citric acid(CA)ligands,aiming for highly active and selective ECSH.The as-prepared EDCu-CA electrode achieves more than 97%alkyne conversion and 99%olefin selectivity.In-situ Raman and Auger electron spectroscopy(AES)data provide evidence that active Cu^(+)sites can stably exist in the EDCu-CA during the catalytic process.Density functional theory(DFT)calculations indicate that the modulation by CA contributes to maintaining Cu in a positive valence state,and Cu^(+)can inhibit the over-hydrogenation of olefins.Moreover,by utilizing a large-area electrode for longterm electrolysis,g-level conversion and a 92%separation yield of olefin can be achieved,demonstrating a viable application prospect.This study offers a promising route for designing Cu-based catalysts for the highly selective electrocata lytic conversion of organic substrates to value-added chemicals in water.展开更多
Background:Benign prostatic hyperplasia(BPH)is the most common disease in elderly men.There is increasing evidence that periodontitis increases the risk of BPH,but the specific mechanism remains unclear.This study aim...Background:Benign prostatic hyperplasia(BPH)is the most common disease in elderly men.There is increasing evidence that periodontitis increases the risk of BPH,but the specific mechanism remains unclear.This study aimed to explore the role and mechanism of the key periodontal pathogen Porphyromonas gingivalis(P.gingivalis)in the development of BPH.Methods:The subgingival plaque(Sp)and prostatic fluid(Pf)of patients with BPH concurrent periodontitis were extracted and cultured for 16S r DNA sequencing.Ligature-induced periodontitis,testosterone-induced BPH and the composite models in rats were established.The P.gingivalis and its toxic factor P.gingivalis lipopolysaccharide(P.gLPS)were injected into the ventral lobe of prostate in rats to simulate its colonization of prostate.P.g-LPS was used to construct the prostate cell infection model for mechanism exploration.Results:P.gingivalis,Streptococcus oralis,Capnocytophaga ochracea and other oral pathogens were simultaneously detected in the Sp and Pf of patients with BPH concurrent periodontitis,and the average relative abundance of P.gingivalis was found to be the highest.P.gingivalis was detected in both Sp and Pf in 62.5%of patients.Simultaneous periodontitis and BPH synergistically aggravated prostate histological changes.P.gingivalis and P.gLPS infection could induce obvious hyperplasia of the prostate epithelium and stroma(epithelial thickness was 2.97-fold and 3.08-fold that of control group,respectively),and increase of collagen fibrosis(3.81-fold and 5.02-fold that of control group,respectively).P.gingivalis infection promoted prostate cell proliferation,inhibited apoptosis,and upregulated the expression of inflammatory cytokines interleukin-6(IL-6;4.47-fold),interleukin-6 receptor-α(IL-6Rα;5.74-fold)and glycoprotein 130(gp130;4.47-fold)in prostatic tissue.P.g-LPS could significantly inhibit cell apoptosis,promote mitosis and proliferation of cells.P.g-LPS activates the Akt pathway through IL-6/IL-6Rα/gp130 complex,which destroys the imbalance between proliferation and apoptosis of prostate cells,induces BPH.Conclusion:P.gingivalis was abundant in the Pf of patients with BPH concurrent periodontitis.P.gingivalis infection can promote BPH,which may affect the progression of BPH via inflammation and the Akt signaling pathway.展开更多
Eutrophication is a significant challenge for surface water,with sediment phosphorus(P)release being a key contributor.Although biological aluminum-based P-inactivation agent(BA-PIA)has shown effectiveness in controll...Eutrophication is a significant challenge for surface water,with sediment phosphorus(P)release being a key contributor.Although biological aluminum-based P-inactivation agent(BA-PIA)has shown effectiveness in controlling P release from sediment,the efficiency and mechanism by BA-PIA capping is still not fully understood.This study explored the efficiency and mechanism of using BA-PIA capping controlling P release from sediment.The main mechanisms controlling P release from sediment via BA-PIA capping involved transforming mobile and less stable fractions into stable ones,passivating DGT-labile P and establishing a 13 mm’P static layer’within the sediment.Additionally,BA-PIA’s impact on Fe redox processes significantly influenced P release from the sediment.After BA-PIA capping,notable reductionswere observed in total P,soluble reactive P(SRP),and diffusive gradient in thin-films(DGT)-measured labile P(DGT-labile P)concentration in the overlying water,with reduction rates of 95.6%,92.7%,and 96.5%,respectively.After BA-PIA capping,the diffusion flux of SRP across the sediment-water interface and the apparent P diffusion flux decreased by 91.3%and 97.8%,respectively.Additionally,BA-PIA capping led to reduced concentrations of SRP,DGT-labile P,and DGT-measured labile Fe(II)in the sediment interstitial water.Notably,BA-PIA capping significantly reduced P content and facilitated transformation in the 0∼30 mm sediment layers but not in the 30∼45 mm and 45∼60 mm sediment layers for NaOH-extractable inorganic P and HCl-extracted P.These findings offer a theoretical basis and technical support for the practical application of BA-PIA capping to control P release from sediment.展开更多
Nearly undamaged joints of electron beam welded(EBW)dual-phase Mg-8Li-3Al-2Zn-0.5Y alloy were achieved with joint coefficients exceeding 95%.All specimens were fractured at the base metal(BM),implying a significant de...Nearly undamaged joints of electron beam welded(EBW)dual-phase Mg-8Li-3Al-2Zn-0.5Y alloy were achieved with joint coefficients exceeding 95%.All specimens were fractured at the base metal(BM),implying a significant departure from conventional fracture modes of welded joints.The fusion zone(FZ)consists of ultrafine acicular α-Mg and equiaxed β-Li,with grain sizes reduced by approximately 90% and 80%,respectively,compared to the base metal.This results in a significant increase in microhardness of about 40%.A unique multiphase mixture was observed in the heat-affected zone(HAZ),which mainly consists of lamellar eutectoid structures,fine precipitates zone,and numerous fine Mg_(3)(Al,Zn)particles.This mixture was transformed from typical Li(Al,Zn)(a common softening phase)undergoing atomic diffusion and solid-state phase transformation during welding.It introduces a synergistic strengthening effect,making the heat-affected zone no longer the weakest part of the joint.This study provides valuable insights into the electron beam welding technology for Mg-Li alloys and offers theoretical support for manufacturing high-quality joints.展开更多
The thickness and upper densification structure of an ice sheet are important parameters for dynamic ice sheet modeling and glacier mass balance studies.Seismic ambient noise methods,such as the horizontal-to-vertical...The thickness and upper densification structure of an ice sheet are important parameters for dynamic ice sheet modeling and glacier mass balance studies.Seismic ambient noise methods,such as the horizontal-to-vertical spectral ratio(H/V)method and ambient noise cross-correlation method,are becoming increasingly popular in glacier structure investigations.During China's 39th expedition to Antarctica,seismic ambient noise experiments were conducted to investigate the structure of the ice sheet at Kunlun Station,Dome A,using a seismic nodal system.We obtained a broad band(0.1–10 Hz)H/V curve with a 1-hour noise record from a seismic node.In addition,we extracted the Rayleigh wave dispersion curve with 5-day noise cross-correlation functions from a linear dense seismic array.Three clear peaks were observed in the H/V curve—a lower peak at~0.17 Hz and two higher frequency peaks at~3 Hz and~6 Hz.We inverted the ice sheet thickness using the lower frequency portion of the H/V curve and inverted the upper structure of the ice sheet using the higher frequency portion of the H/V curve jointly with the dispersion curve.Our estimations from ambient noise observations were consistent with those derived from the BedMachine ice sheet thickness dataset and the density profile determined by ground-penetrating radar investigations at the same site.展开更多
In this paper,we obtain a normality criterion for families of meromorphic functions concerning‘wandering’shared functions,which generalizes and improves Montel’s criterion and the related results due to Schwick,Xu-...In this paper,we obtain a normality criterion for families of meromorphic functions concerning‘wandering’shared functions,which generalizes and improves Montel’s criterion and the related results due to Schwick,Xu-Fang,Xu-Qiu,and Grahl-Nevo.Also,a normality relationship between two families is given.展开更多
In the field of quantum error mitigation,most current research separately addresses quantum gate noise mitigation and measurement noise mitigation.However,due to the typically high complexity of measurement noise miti...In the field of quantum error mitigation,most current research separately addresses quantum gate noise mitigation and measurement noise mitigation.However,due to the typically high complexity of measurement noise mitigation methods,such as those based on estimating response matrices,the overall complexity of noise mitigation schemes increases when combining measurement noise mitigation with other quantum gate noise mitigation approaches.This paper proposes a low-complexity quantum error mitigation scheme that jointly mitigates quantum gate and measurement noise,specifically when measurement noise manifests as an amplitude damping channel.The proposed scheme requires estimating only three parameters to jointly mitigate both types of noise,whereas the zero-noise extrapolation method enhanced by response matrix estimation requires estimating at least six parameters under the same conditions.展开更多
Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A;p. Ala632Thr) in a 7-year-old boy exhibi...Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A;p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a^(−/−) OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a^(−/−) OPCs in vitro and myelination in Tmem63a^(−/−) mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca^(2+) influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.展开更多
Zinc(Zn)alloys exhibit substantial potential for application in the domain of metal materials that are both biodegradable and implantable because of their appropriate degradation rate and biocompatibility.Selenium(Se)...Zinc(Zn)alloys exhibit substantial potential for application in the domain of metal materials that are both biodegradable and implantable because of their appropriate degradation rate and biocompatibility.Selenium(Se)has been widely employed in tumor treatment,positioning ZnSe alloys as promising candidates for the development of the next generation of antitumor degradable materials.However,the considerable disparity in melting points and the volatility of elemental Zn and Se pose significant challenges for alloying using conventional melting methods.Here,we report a Zn-4Ag-2Se alloy using silver selenide(Ag2Se)as the Se source for biodegradable implant materials.The alloy's antibacterial and antitumor capabilities,along with its mechanical,corrosion,and biocompatibility properties,were assessed and then compared to the properties of a Zn-4Ag alloy.Both alloys consisted primarily ofη-Zn andε-AgZn3phases,with the Zn-4Ag-2Se alloy additionally containing a minor amount of a ZnSe phase.The hot-rolled(HR)Zn-4Ag-2Se alloy exhibited an ultimate tensile strength of 211.5±2.3 MPa and elongation of 24.9%±0.6%.Additionally,the HR Zn-4Ag-2Se alloy demonstrated an electrochemical corrosion rate of 105.51±1.21μm year^(-1)and degradation rate of 59.8±0.2μm year^(-1)in Hanks'solution,meeting the performance criteria for degradable implant materials.The HR Zn-4Ag-2Se alloy also exhibited excellent antibacterial activity,evidenced by an inhibition zone diameter(IZD)of 2.22±0.01 mm and colony-forming unit count of 58±2.The HR Zn-4Ag-2Se alloy did not inhibit the proliferation of MC3T3-E1 cells but promoted reactive oxygen species production and finally cell death toward MG63 osteosarcoma cells.展开更多
Amplitude dissipation and phase dispersion occur when seismic waves propagate in attenuated anisotropic media,affecting the quality of migration imaging.To compensate and correct for these effects,the fractional Lapla...Amplitude dissipation and phase dispersion occur when seismic waves propagate in attenuated anisotropic media,affecting the quality of migration imaging.To compensate and correct for these effects,the fractional Laplacian pure viscoacoustic wave equation capable of producing stable and noise-free wavefields has been proposed and implemented in the Q-compensated reverse time migration(RTM).In addition,the second-order Taylor series expansion is usually adopted in the hybrid finite-difference/pseudo-spectral(HFDPS)strategy to solve spatially variable fractional Laplacian.However,during forward modeling and Q-compensated RTM,this HFDPS strategy requires 11 and 17 fast Fourier transforms(FFTs)per time step,respectively,leading to computational inefficiency.To improve computational efficiency,we introduce two high-efficiency HFDPS numerical modeling strategies based on asymptotic approximation and algebraic methods.Through the two strategies,the number of FFTs decreased from 11 to 6 and 5 per time step during forward modeling,respectively.Numerical examples demonstrate that wavefields simulated using the new numerical modeling strategies are accurate and highly efficient.Finally,these strategies are employed for implementing high-efficiency and stable Q-compensated RTM techniques in tilted transversely isotropic media,reducing the number of FFTs from 17 to 9 and 8 per time step,respectively,significantly improving computational efficiency.Synthetic data examples illustrate the effectiveness of the proposed Q-compensated RTM scheme in compensating amplitude dissipation and correcting phase distortion.展开更多
In current neural network algorithms for nuclide identification in high-background,poor-resolution detectors,traditional network paradigms including back-propagation networks,convolutional neural networks,recurrent ne...In current neural network algorithms for nuclide identification in high-background,poor-resolution detectors,traditional network paradigms including back-propagation networks,convolutional neural networks,recurrent neural networks,etc.,have been limited in research on γ spectrum analysis because of their inherent mathematical mechanisms.It is difficult to make progress in terms of training data requirements and prediction accuracy.In contrast to traditional network paradigms,network models based on the transformer structure have the characteristics of parallel computing,position encoding,and deep stacking,which have enabled good performance in natural language processing tasks in recent years.Therefore,in this paper,a transformer-based neural network (TBNN) model is proposed to achieve nuclide identification for the first time.First,the Geant4 program was used to generate the basic single-nuclide energy spectrum through Monte Carlo simulations.A multi-nuclide energy spectrum database was established for neural network training using random matrices of γ-ray energy,activity,and noise.Based on the encoder–decoder structure,a network topology based on the transformer was built,transforming the 1024-channel energy spectrum data into a 32×32 energy spectrum sequence as the model input.Through experiments and adjustments of model parameters,including the learning rate of the TBNN model,number of attention heads,and number of network stacking layers,the overall recognition rate reached 98.7%.Additionally,this database was used for training AI models such as back-propagation networks,convolutional neural networks,residual networks,and long shortterm memory neural networks,with overall recognition rates of 92.8%,95.3%,96.3%,and 96.6%,respectively.This indicates that the TBNN model exhibited better nuclide identification among these AI models,providing an important reference and theoretical basis for the practical application of transformers in the qualitative and quantitative analysis of the γ spectrum.展开更多
基金supported by the Lithium Resources and Lithium Materials Key Laboratory of Sichuan Province(LRMKF202405)the National Natural Science Foundation of China(52402226)+3 种基金the Natural Science Foundation of Sichuan Province(2024NSFSC1016)the Scientific Research Startup Foundation of Chengdu University of Technology(10912-KYQD2023-10240)the opening funding from Key Laboratory of Engineering Dielectrics and Its Application(Harbin University of Science and Technology)(KFM202507,Ministry of Education)the funding provided by the Alexander von Humboldt Foundation。
文摘The properties of electrolytes are critical for fast-charging and stable-cycling applications in lithium metal batteries(LMBs).However,the slow kinetics of Li^(+)transport and desolvation in commercial carbonate electrolytes,cou pled with the formation of unstable solid electrolyte interphases(SEI),exacerbate the degradation of LMB performance at high current densities.Herein,we propose a versatile electrolyte design strategy that incorporates cyclohexyl methyl ether(CME)as a co-solvent to reshape the Li^(+)solvation environment by the steric-hindrance effect of bulky molecules and their competitive coordination with other solvent molecules.Simulation calculations and spectral analysis demonstrate that the addition of CME molecules reduces the involvement of other solvent molecules in the Li solvation sheath and promotes the formation of Li^(+)-PF_(6)^(-)coordination,thereby accelerating Li^(+)transport kinetics.Additionally,this electrolyte composition improves Li^(+)desolvation kinetics and fosters the formation of inorganic-rich SEI,ensuring cycle stability under fast charging.Consequently,the Li‖LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery with the modified electrolyte retains 82% of its initial capacity after 463 cycles at 1 C.Even under the extreme fast-charging condition of 5 C,the battery can maintain 80% capacity retention after 173 cycles.This work provides a promising approach for the development of highperformance LMBs by modulating solvation environment of electrolytes.
基金supported by grants from the National Natural Science Foundation of China(82125032,81930095,82204048 and 81761128035)the Science and Technology Commission of Shanghai Municipality(19410713500 and 2018SHZDZX01)+3 种基金the Foundation of Shanghai Municipal Commission of Health and Family Planning(GWV-10.1-XK07,2020CXJQ01 and 2018YJRC03)the Shanghai Clinical Key Subject Construction Project(shslczdzk02902)the Innovative Research Team of High-Level Local Universities in Shanghai(SHSMU-ZDCX20211100)the Guangdong Key Project(2018B030335001).
文摘To the editor:Social communication impairment(SCI)is a core symptom of autism spectrum disorder(ASD),and evidence-based interventions targeting this domain remain limited.In the past decade,repetitive transcranial magnetic stimulation(rTMS),one of the most commonly applied non-invasive neurostimulation techniques,has shown efficacy in treating neuropsychiatric disorders,such as depression.
基金supported by the National Defense Basic Research Program of China(No.JCKY2023204A005)the Research Program of Joint Research Center of Advanced Spaceflight Technologies of China(No.USCAST2023-3)+2 种基金the National Natural Science Foundation of China(No.U2037601)the Major Scientific and Technological Innovation Project of Luoyang,Henan Province,China(No.2201029A)the Foundation Strengthening Plan Technical Field Fund,China(No.2021-JJ-0112).
文摘Tungsten inert gas(TIG)welding and laser beam welding(LBW)were employed on as-cast and as-forged Mg−8Li−3Al−2Zn−0.5Y(LAZ832-0.5Y)alloys to investigate their weldability.The microstructure and mechanical properties of solid solution treated samples were investigated for the purpose of further strength improvement,which were treated at 350℃ for 4 h.The ultimate tensile strength(UTS)and yield strength(YS)of the optimal TIG as-cast alloy welding joint were 159 and 122 MPa,which were obtained under the welding current of 80 A,and were lower than the UTS(184 MPa)and YS(146 MPa)of the optimal LBW as-forged welding joint under the power of 2.1 kW/2.0 kW double-side welding.After the solid solution treatment,on the one hand,the growth ofα-Mg grains in the fusion zone(FZ),heat affected zone(HAZ)and base metal(BM)of both the TIG and LBW welding joints was insignificant.On the other hand,the larger Al_(2)Y phases were still present,while the much smaller white AlLi particles were dissolved into the matrix,leading to the solid solution strengthening of the welding joints.As a result,the UTS and YS of the TIG welding joint respectively increased to 216 and 188 MPa after solid solution treatment,and those of the LBW welding joint only increased to 211 and 160 MPa,respectively.
基金supported by the National Key Research and Development Program of China (No.2021YFB3701000)the National Natural Science Foundation of China (Nos. U21A2047, 52201129, 51821001,U2037601)+1 种基金the support by the China Postdoctoral Science Foundation (No. 2023M742219)the Postdoctoral Fellowship Program (Grade B) of CPSF(No. GZB20240419)
文摘As a universal casting Mg-RE alloy,Mg-6Gd-3Y-Zr(GW63K,wt.%)alloy exhibits superior strength-ductility synergy and holds significant potential for engineering applications.In this study,the GW63K alloy is produced using the laser powder bed fusion(LPBF)additive manufacturing(AM)process for the first time.The printability,microstructure characteristics,and post-heat treatment conditions of the GW63K alloy are systematically investigated.The as-built GW63K samples demonstrate high relative densities exceeding 99.6%and exhibit no macroscopic and microscopic cracking across a wide range of process parameters,indicating excellent printability.An exceptional heterogeneous microstructure is observed in the as-built GW63K alloy,comprising coarse columnar grains,fine equiaxed grains with an average grain size of 21.72μm,uniformly distributed nano-sized Mg_(24)(Gd,Y)_(5)secondary phase,and numerous dislocations.Consequently,the as-built GW63K alloy displays enhanced tensile strengths and ductility compared to the as-cast alloy,with yield strength(YS),ultimate tensile strength(UTS)and elongation(EL)values of 218±4 MPa,284±5 MPa and 11.9±1.6%respectively.Additionally,due to the absence of coarse micron-sized secondary phase,a specific direct aging(T5)heat treatment regime at 200℃for 128 h is optimized for the as-built GW63K alloy to introduce dense and dispersedβ’aging precipitates.This T5 treatment surpasses the conventional solution plus aging(T6)heat treatment in enhancing mechanical properties.The LPBF-T5 GW63K alloy exhibits YS,UTS and EL values of 293±6 MPa,359±4 MPa and 2.9±0.7%,respectively.Notably,the YS of the LPBF-T5 alloy represents the highest value for the GW63K alloy,even surpassing that of the extrusion-T5 alloy.This study indicates that the GW63K alloy is a highly promising material for manufacturing near-net-shape high-strength Mg alloy components with intricate geometries using LPBF.
基金financially supported by the National Defense Basic Research Program,China(No.JCKY2023204A005)Foundation Strengthening Plan Technical Field Fund,China(No.2021-JJ-0112)+1 种基金Major Scientific and Technological Innovation Project of Luoyang,China(No.2201029A)the National Natural Science Foundation of China(No.U2037601).
文摘The influence of refining flux composition,refining time,refining temperature,and addition amount on the microstructure and mechanical properties of Mg-9Li-3Al-1Zn alloy was investigated with orthogonal experimental design.The flux purification process for Mg-Li alloys was optimized and the most effective ternary flux composition was identified.Results indicate that flux purification significantly mitigates Li loss during smelting by forming a protective surface layer that reduces Li oxidation and evaporation.The optimal flux composition is LiCl:LiF:CaF_(2)in a 3:1:2 mass ratio,with a flux addition of 3%,refining temperature of 720°C,and holding time of 10 min.The elongation of alloy improves to 16.2% after refinement,while the enhancement in strength remains marginal.
文摘Diaphragma juglandis(D.juglandis)Fructus is a brownish lamellar structure located between walnut kernels.As a traditional Chinese herbal medicine,it exhibits therapeutic effects including spleen-strengthening,kidney consolidation,astringency,diuresis,and heat-clearing.In this study,the polyphenolic constituents of D.juglandis and its functional instant tea were investigated in this study.Three polyphenolic compounds were isolated from 70%ethanol extract of D.juglandis Fructus as 2-methoxy juglone,regiolone and quercetin.The HPLC method was established for determination of the content of quercetin in the instant tea samples under the premise that the methodology was verifi ed to meet the standard requirements.The preparation process of D.juglandis Fructus instant tea was optimized through single factor experiments and Box-Behnken design-response surface methodology and the optimal conditions were determined as follows:feed rate of 10 mL/min,inlet temperature of 151℃,andβ-cyclodextrin addition of 9%.Then the antioxidant activity of each sample was evaluated using DPPH and ABTS radical scavenging assays.The results showed that the quercetin had significant antioxidant activity.The instant tea group demonstrated superior antioxidant effects compared to the extracts group at 50,200,and 800μg/mL(P<0.001),likely due to the optimized spray-drying process,which might have enhanced the solubility,stability,and bioavailability of the active compounds.The results provided critical foundational data for the deep processing and comprehensive utilization of D.juglandis Fructus.
基金Weifang Vocational College Research Project and the National Key Research and Development Program of China(2023YFE0104700).
文摘This study investigated the effects of chlorine-based fertilizers under varying nitrogen solution concentrations in a soilless culture system. The experiment included four nitrogen solution concentration levels, with nitrogen concentrations of 6 mmol/L (C1), 12 mmol/L (C2), 18 mmol/L (C3), and 24 mmol/L (C4). Each nutrient concentration level was further divided into four chloride ion treatments (R1, R2, R3, and R4), where 100%, 60%, 33%, and 0% of the NH4+ and K+ ions were derived from NH4Cl and KCl, respectively. The length, surface area and volume of root were significantly higher by 25.3%~136.9%, 40.1%~173.1%, 27.9%~178.0%, respectively, in the R4 treatment than in the R1 and R2 treatments at flowering stage. The aboveground biomass and yield in the R4 treatment were significantly higher, by approximately 15.6%~43.5% and 16.6%~28.6%, respectively, than in the R1, R2, and R3 treatments at the picking stage. The C3 and C4 treatments significantly decreased biomass and yield by 31.9%~50.2% and 20.7%~50.5%, respectively, compared to the C1 and C2 treatments at the picking stage. Besides, the higher nutrient solution increased the incidence of blossom-end rot. In conclusion, high concentrations of chloride ions in nutrient solutions, especially when the Cl− concentration exceeded 10 mmol/L, have been shown to inhibit tomato growth in soilless culture systems. Therefore, replacing sulfur-based fertilizers by chlorine-based fertilizers is not recommended for tomato production under the studied conditions.
基金Natural Science Foundation of Hubei Province,Grant/Award Number:2024AFB877the Chongqing Medical Scientific Research Project(Joint Project of Chongqing Health Commission and Science&Technology Bureau),Grant/Award Number:2023GGXM003+3 种基金Chongqing Municipal Health Commission,Grant/Award Number:YXGD202451Organization Department of Chongqing Municipal Party Committee,Grant/Award Number:cstc2024ycjh-bgzxm0103National Natural Science Foundation of China,Grant/Award Number:82371361Jingmen Science and Technology Bureau,Grant/Award Number:2024ZDYF012。
文摘Background:Hemorrhagic expansion into the fourth ventricle is an independent risk factor for poor outcomes in intraventricular hemorrhage(IVH)patients.However,to date,available animal models of IVH are limited to models of supratentorial ventricular hemorrhage,and there are no specific models of fourth ventricle hemorrhage.This limitation hinders comprehensive basic research and the understanding of the pathophysiological changes that occur following fourth ventricle hemorrhage.Therefore,the development of an animal model of fourth ventricle hemorrhage is highly important.Methods:In this study,a novel rat model of fourth ventricle hemorrhage was established via autologous blood injection through the foramen of Magendie.Anesthetized rats were positioned in a stereotaxic apparatus with their heads tilted downward at an angle of approximately 20°relative to the vertical axis.A needle was inserted through the foramen,and autologous blood obtained from the rat's heart was injected into the fourth ventricle via a microinfusion pump.Systematic evaluations of the model were conducted using small-animal magnetic resonance imaging,histopathological analysis,and neurological function assessment.Results:The rats developed stable and reproducible fourth ventricle hematomas and ventricular dilation.They also exhibited acute-phase hydrocephalus and pathological features of perilesional brain tissue injury,with observed neurological deficits comparable to patients with fourth ventricle hemorrhage.Conclusion:This model successfully recapitulates the clinicopathological and pathophysiological characteristics of patients with fourth ventricle hemorrhage and can be utilized for further investigation into the pathophysiological mechanisms underlying posthemorrhagic hydrocephalus and perilesional brainstem tissue injury.
文摘In situ growth of co-catalysts on BiVO_(4)(BVO)to enhance photoelectrochemical(PEC)water splitting performance has been extensively reported.However,the understanding of the synergistic effects among various elements,especially at the interface between the semiconductor and cocatalyst,has received insufficient attention.In this study,we report a Co,Ni and Mn trimetallic fluoride-modified BVO photoanode featuring a unique interfacial chemical bond(V-F).Under AM 1.5 G illumination,an exciting photocurrent density of 6.05 mA cm^(-2)was achieved at 1.23 V vs.RHE by the integrated BVO/CoNi_(0.18)Mn_(0.12)(OH)_(x)F photoanode and over 98%of the initial photocurrent was maintained after 10 h of photoelectrolysis.Control experiments and theoretical calculations demonstrate that the V-F interfacial bond stabilizes the Co^(2+)active sites.It serves as a transmission gear,interlinking the migration of interfacial charge and the regeneration of cocatalyst,endowing the photoanode with significant activity and stability.Furthermore,we have systematically elucidated the role of the individual Co,Ni,and Mn components in the synergistic cocatalyst layer.The interfacial modification provides novel insights into developing advanced photoanodes towards PEC water splitting.
基金financially supported by the National Natural Science Foundation of China(NSFC)(22179056,22172018)the Liaoning Revitalization Talents Program(XLYC2002097,1807210)+2 种基金the Key Projects of Liaoning Provincial Education Department(JYTZD2023001)the Fundamental Research Funds for the Central Universities(DUT23LAB611)Yingkou Talents Program。
文摘Selective electrocatalytic semi-hydrogenation(ECSH)of alkynes in water using Cu catalysts is highly relevant for the production of value-added chemicals.However,achieving high olefin selectivity still poses extreme challenges due to the susceptibility of the copper cathode in a reduction environment.Herein,a small molecule modulation electrodeposition strategy is introduced that regulates the structure of Cubased materials through modification with citric acid(CA)ligands,aiming for highly active and selective ECSH.The as-prepared EDCu-CA electrode achieves more than 97%alkyne conversion and 99%olefin selectivity.In-situ Raman and Auger electron spectroscopy(AES)data provide evidence that active Cu^(+)sites can stably exist in the EDCu-CA during the catalytic process.Density functional theory(DFT)calculations indicate that the modulation by CA contributes to maintaining Cu in a positive valence state,and Cu^(+)can inhibit the over-hydrogenation of olefins.Moreover,by utilizing a large-area electrode for longterm electrolysis,g-level conversion and a 92%separation yield of olefin can be achieved,demonstrating a viable application prospect.This study offers a promising route for designing Cu-based catalysts for the highly selective electrocata lytic conversion of organic substrates to value-added chemicals in water.
基金supported(in part)by the National Natural Science Foundation of China(82200862,82370778)the Hubei Provincial Natural Science Foundation(2022CFB681,2023AFA061,2019CFB760)+4 种基金the Hubei Province Health and Family Planning Scientific Research Project(WJ2023M058,WJ2019H035)the Key Scientific Research Project of Education Department of Henan Province(22A320038)the Fundamental Research Funds for the Central Universities(2042023kf1019,2042023kf0051,2042022kf0072)the Zhongnan Hospital of Wuhan University,Science Technology and Innovation Seed Fund(CXPY2022074)the Young Top-notch Talent Cultivation Program of Hubei Province(for Prof.Zeng XT).
文摘Background:Benign prostatic hyperplasia(BPH)is the most common disease in elderly men.There is increasing evidence that periodontitis increases the risk of BPH,but the specific mechanism remains unclear.This study aimed to explore the role and mechanism of the key periodontal pathogen Porphyromonas gingivalis(P.gingivalis)in the development of BPH.Methods:The subgingival plaque(Sp)and prostatic fluid(Pf)of patients with BPH concurrent periodontitis were extracted and cultured for 16S r DNA sequencing.Ligature-induced periodontitis,testosterone-induced BPH and the composite models in rats were established.The P.gingivalis and its toxic factor P.gingivalis lipopolysaccharide(P.gLPS)were injected into the ventral lobe of prostate in rats to simulate its colonization of prostate.P.g-LPS was used to construct the prostate cell infection model for mechanism exploration.Results:P.gingivalis,Streptococcus oralis,Capnocytophaga ochracea and other oral pathogens were simultaneously detected in the Sp and Pf of patients with BPH concurrent periodontitis,and the average relative abundance of P.gingivalis was found to be the highest.P.gingivalis was detected in both Sp and Pf in 62.5%of patients.Simultaneous periodontitis and BPH synergistically aggravated prostate histological changes.P.gingivalis and P.gLPS infection could induce obvious hyperplasia of the prostate epithelium and stroma(epithelial thickness was 2.97-fold and 3.08-fold that of control group,respectively),and increase of collagen fibrosis(3.81-fold and 5.02-fold that of control group,respectively).P.gingivalis infection promoted prostate cell proliferation,inhibited apoptosis,and upregulated the expression of inflammatory cytokines interleukin-6(IL-6;4.47-fold),interleukin-6 receptor-α(IL-6Rα;5.74-fold)and glycoprotein 130(gp130;4.47-fold)in prostatic tissue.P.g-LPS could significantly inhibit cell apoptosis,promote mitosis and proliferation of cells.P.g-LPS activates the Akt pathway through IL-6/IL-6Rα/gp130 complex,which destroys the imbalance between proliferation and apoptosis of prostate cells,induces BPH.Conclusion:P.gingivalis was abundant in the Pf of patients with BPH concurrent periodontitis.P.gingivalis infection can promote BPH,which may affect the progression of BPH via inflammation and the Akt signaling pathway.
基金supported by the National Natural Science Foundation of China(No.51878300)the National Natural Science Foundation of Xiamen City(No.3502Z202373041)the Water Conservancy Science and Technology Plan Project(No.RC2127).
文摘Eutrophication is a significant challenge for surface water,with sediment phosphorus(P)release being a key contributor.Although biological aluminum-based P-inactivation agent(BA-PIA)has shown effectiveness in controlling P release from sediment,the efficiency and mechanism by BA-PIA capping is still not fully understood.This study explored the efficiency and mechanism of using BA-PIA capping controlling P release from sediment.The main mechanisms controlling P release from sediment via BA-PIA capping involved transforming mobile and less stable fractions into stable ones,passivating DGT-labile P and establishing a 13 mm’P static layer’within the sediment.Additionally,BA-PIA’s impact on Fe redox processes significantly influenced P release from the sediment.After BA-PIA capping,notable reductionswere observed in total P,soluble reactive P(SRP),and diffusive gradient in thin-films(DGT)-measured labile P(DGT-labile P)concentration in the overlying water,with reduction rates of 95.6%,92.7%,and 96.5%,respectively.After BA-PIA capping,the diffusion flux of SRP across the sediment-water interface and the apparent P diffusion flux decreased by 91.3%and 97.8%,respectively.Additionally,BA-PIA capping led to reduced concentrations of SRP,DGT-labile P,and DGT-measured labile Fe(II)in the sediment interstitial water.Notably,BA-PIA capping significantly reduced P content and facilitated transformation in the 0∼30 mm sediment layers but not in the 30∼45 mm and 45∼60 mm sediment layers for NaOH-extractable inorganic P and HCl-extracted P.These findings offer a theoretical basis and technical support for the practical application of BA-PIA capping to control P release from sediment.
基金financially supported by the National Defense Basic Research Program(No.JCKY2023204A005)Project of High Modulus Magnesium Alloy Forgings(JXXT-2023-014hbza)+1 种基金Research Program of Joint Research Center of Advanced Spaceflight Technologies(No.USCAST2023-3)Major Scientific and Technological Innovation Project of Luoyang(No.2201029A).
文摘Nearly undamaged joints of electron beam welded(EBW)dual-phase Mg-8Li-3Al-2Zn-0.5Y alloy were achieved with joint coefficients exceeding 95%.All specimens were fractured at the base metal(BM),implying a significant departure from conventional fracture modes of welded joints.The fusion zone(FZ)consists of ultrafine acicular α-Mg and equiaxed β-Li,with grain sizes reduced by approximately 90% and 80%,respectively,compared to the base metal.This results in a significant increase in microhardness of about 40%.A unique multiphase mixture was observed in the heat-affected zone(HAZ),which mainly consists of lamellar eutectoid structures,fine precipitates zone,and numerous fine Mg_(3)(Al,Zn)particles.This mixture was transformed from typical Li(Al,Zn)(a common softening phase)undergoing atomic diffusion and solid-state phase transformation during welding.It introduces a synergistic strengthening effect,making the heat-affected zone no longer the weakest part of the joint.This study provides valuable insights into the electron beam welding technology for Mg-Li alloys and offers theoretical support for manufacturing high-quality joints.
基金supported by the National Natural Science Foundation of China(NSFC),grant number 42076234the National Key Research and Development Program of China,grant number 2021YFC2801404。
文摘The thickness and upper densification structure of an ice sheet are important parameters for dynamic ice sheet modeling and glacier mass balance studies.Seismic ambient noise methods,such as the horizontal-to-vertical spectral ratio(H/V)method and ambient noise cross-correlation method,are becoming increasingly popular in glacier structure investigations.During China's 39th expedition to Antarctica,seismic ambient noise experiments were conducted to investigate the structure of the ice sheet at Kunlun Station,Dome A,using a seismic nodal system.We obtained a broad band(0.1–10 Hz)H/V curve with a 1-hour noise record from a seismic node.In addition,we extracted the Rayleigh wave dispersion curve with 5-day noise cross-correlation functions from a linear dense seismic array.Three clear peaks were observed in the H/V curve—a lower peak at~0.17 Hz and two higher frequency peaks at~3 Hz and~6 Hz.We inverted the ice sheet thickness using the lower frequency portion of the H/V curve and inverted the upper structure of the ice sheet using the higher frequency portion of the H/V curve jointly with the dispersion curve.Our estimations from ambient noise observations were consistent with those derived from the BedMachine ice sheet thickness dataset and the density profile determined by ground-penetrating radar investigations at the same site.
基金Supported by the National Natural Science Foundation of China(Grant No.11471163)。
文摘In this paper,we obtain a normality criterion for families of meromorphic functions concerning‘wandering’shared functions,which generalizes and improves Montel’s criterion and the related results due to Schwick,Xu-Fang,Xu-Qiu,and Grahl-Nevo.Also,a normality relationship between two families is given.
基金supported by the National Natural Science Foundation of China(Grant No.62271265)。
文摘In the field of quantum error mitigation,most current research separately addresses quantum gate noise mitigation and measurement noise mitigation.However,due to the typically high complexity of measurement noise mitigation methods,such as those based on estimating response matrices,the overall complexity of noise mitigation schemes increases when combining measurement noise mitigation with other quantum gate noise mitigation approaches.This paper proposes a low-complexity quantum error mitigation scheme that jointly mitigates quantum gate and measurement noise,specifically when measurement noise manifests as an amplitude damping channel.The proposed scheme requires estimating only three parameters to jointly mitigate both types of noise,whereas the zero-noise extrapolation method enhanced by response matrix estimation requires estimating at least six parameters under the same conditions.
基金supported by grants from the National Key R&D Program of China(2019YFA0801603)the Guangdong High Level Innovation Research Institute(2021B0909050004)+2 种基金the National Natural Science Foundation of China(32330044,32170951,82201615,and 82101393)the Natural Science Foundation of Jiangsu Province(BK20201255 and BK20210008)the Fundamental Research Funds for the Central Universities(021414380533).
文摘Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A;p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a^(−/−) OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a^(−/−) OPCs in vitro and myelination in Tmem63a^(−/−) mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca^(2+) influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.
基金financially supported by the National Natural Science Foundation of China(Nos.52401064 and 12472101)the Scientific Research Fund of Hunan Provincial Education Department(No.24B0172)+1 种基金Australian Research Council(ARC)through the discovery grants(No.DP240101131)the Post-graduate Scientific Research Innovation Project of Hunan Province(No.CX20230657)
文摘Zinc(Zn)alloys exhibit substantial potential for application in the domain of metal materials that are both biodegradable and implantable because of their appropriate degradation rate and biocompatibility.Selenium(Se)has been widely employed in tumor treatment,positioning ZnSe alloys as promising candidates for the development of the next generation of antitumor degradable materials.However,the considerable disparity in melting points and the volatility of elemental Zn and Se pose significant challenges for alloying using conventional melting methods.Here,we report a Zn-4Ag-2Se alloy using silver selenide(Ag2Se)as the Se source for biodegradable implant materials.The alloy's antibacterial and antitumor capabilities,along with its mechanical,corrosion,and biocompatibility properties,were assessed and then compared to the properties of a Zn-4Ag alloy.Both alloys consisted primarily ofη-Zn andε-AgZn3phases,with the Zn-4Ag-2Se alloy additionally containing a minor amount of a ZnSe phase.The hot-rolled(HR)Zn-4Ag-2Se alloy exhibited an ultimate tensile strength of 211.5±2.3 MPa and elongation of 24.9%±0.6%.Additionally,the HR Zn-4Ag-2Se alloy demonstrated an electrochemical corrosion rate of 105.51±1.21μm year^(-1)and degradation rate of 59.8±0.2μm year^(-1)in Hanks'solution,meeting the performance criteria for degradable implant materials.The HR Zn-4Ag-2Se alloy also exhibited excellent antibacterial activity,evidenced by an inhibition zone diameter(IZD)of 2.22±0.01 mm and colony-forming unit count of 58±2.The HR Zn-4Ag-2Se alloy did not inhibit the proliferation of MC3T3-E1 cells but promoted reactive oxygen species production and finally cell death toward MG63 osteosarcoma cells.
基金support this research during the 14th Fiveyear Plan period under contract number 2021QNLM020001the Major Scientific and Technological Projects of Shandong Energy Group under contract number SNKJ2022A06-R23+2 种基金the National Natural Science Foundation of China under contract number 42374164the Funds for Creative Research Groups of China under contract number 41821002the basic theoretical research of seismic wave imaging technology in complex oilfield of Changqing Oilfield Company under contract number 2023e10502.
文摘Amplitude dissipation and phase dispersion occur when seismic waves propagate in attenuated anisotropic media,affecting the quality of migration imaging.To compensate and correct for these effects,the fractional Laplacian pure viscoacoustic wave equation capable of producing stable and noise-free wavefields has been proposed and implemented in the Q-compensated reverse time migration(RTM).In addition,the second-order Taylor series expansion is usually adopted in the hybrid finite-difference/pseudo-spectral(HFDPS)strategy to solve spatially variable fractional Laplacian.However,during forward modeling and Q-compensated RTM,this HFDPS strategy requires 11 and 17 fast Fourier transforms(FFTs)per time step,respectively,leading to computational inefficiency.To improve computational efficiency,we introduce two high-efficiency HFDPS numerical modeling strategies based on asymptotic approximation and algebraic methods.Through the two strategies,the number of FFTs decreased from 11 to 6 and 5 per time step during forward modeling,respectively.Numerical examples demonstrate that wavefields simulated using the new numerical modeling strategies are accurate and highly efficient.Finally,these strategies are employed for implementing high-efficiency and stable Q-compensated RTM techniques in tilted transversely isotropic media,reducing the number of FFTs from 17 to 9 and 8 per time step,respectively,significantly improving computational efficiency.Synthetic data examples illustrate the effectiveness of the proposed Q-compensated RTM scheme in compensating amplitude dissipation and correcting phase distortion.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province(Nos.2024NSFSC0422,23NSFSCC0116)Nuclear Energy Development Project(No.[2021]-88).
文摘In current neural network algorithms for nuclide identification in high-background,poor-resolution detectors,traditional network paradigms including back-propagation networks,convolutional neural networks,recurrent neural networks,etc.,have been limited in research on γ spectrum analysis because of their inherent mathematical mechanisms.It is difficult to make progress in terms of training data requirements and prediction accuracy.In contrast to traditional network paradigms,network models based on the transformer structure have the characteristics of parallel computing,position encoding,and deep stacking,which have enabled good performance in natural language processing tasks in recent years.Therefore,in this paper,a transformer-based neural network (TBNN) model is proposed to achieve nuclide identification for the first time.First,the Geant4 program was used to generate the basic single-nuclide energy spectrum through Monte Carlo simulations.A multi-nuclide energy spectrum database was established for neural network training using random matrices of γ-ray energy,activity,and noise.Based on the encoder–decoder structure,a network topology based on the transformer was built,transforming the 1024-channel energy spectrum data into a 32×32 energy spectrum sequence as the model input.Through experiments and adjustments of model parameters,including the learning rate of the TBNN model,number of attention heads,and number of network stacking layers,the overall recognition rate reached 98.7%.Additionally,this database was used for training AI models such as back-propagation networks,convolutional neural networks,residual networks,and long shortterm memory neural networks,with overall recognition rates of 92.8%,95.3%,96.3%,and 96.6%,respectively.This indicates that the TBNN model exhibited better nuclide identification among these AI models,providing an important reference and theoretical basis for the practical application of transformers in the qualitative and quantitative analysis of the γ spectrum.