The Underwater Acoustic(UWA)channel is bandwidth-constrained and experiences doubly selective fading.It is challenging to acquire perfect channel knowledge for Orthogonal Frequency Division Multiplexing(OFDM)communica...The Underwater Acoustic(UWA)channel is bandwidth-constrained and experiences doubly selective fading.It is challenging to acquire perfect channel knowledge for Orthogonal Frequency Division Multiplexing(OFDM)communications using a finite number of pilots.On the other hand,Deep Learning(DL)approaches have been very successful in wireless OFDM communications.However,whether they will work underwater is still a mystery.For the first time,this paper compares two categories of DL-based UWA OFDM receivers:the DataDriven(DD)method,which performs as an end-to-end black box,and the Model-Driven(MD)method,also known as the model-based data-driven method,which combines DL and expert OFDM receiver knowledge.The encoder-decoder framework and Convolutional Neural Network(CNN)structure are employed to establish the DD receiver.On the other hand,an unfolding-based Minimum Mean Square Error(MMSE)structure is adopted for the MD receiver.We analyze the characteristics of different receivers by Monte Carlo simulations under diverse communications conditions and propose a strategy for selecting a proper receiver under different communication scenarios.Field trials in the pool and sea are also conducted to verify the feasibility and advantages of the DL receivers.It is observed that DL receivers perform better than conventional receivers in terms of bit error rate.展开更多
PurposeThe purpose of the study was to investigate the effect of bimodal beamforming on speech recognition and comfort for cochlear implant (CI) users with the bimodal hearing solution made up by linking a hearing aid...PurposeThe purpose of the study was to investigate the effect of bimodal beamforming on speech recognition and comfort for cochlear implant (CI) users with the bimodal hearing solution made up by linking a hearing aid to the CI sound processor.Methods19 subjects participated in this study. Speech tests were conducted in quiet and in noisy environments, with the target speech presented from 0° and the noise signal from 45°. Speech recognition thresholds (SRTs) were compared among the previously used bimodal hearing configuration (baseline, any CI sound processor plus any hearing aid), the Naída Bimodal Hearing Solution with omnidirectional microphone, and with directional microphone (so called StereoZoom) switched on. In addition, the study participants provided subjective feedback on their hearing impressions.ResultsThe SRT results showed no significant difference among the three hearing conditions in the quiet environment. No significant improvement was reported when using Naída bimodal system with omnidirectional microphone in noise compared to the baseline (p=0.27). When applying StereoZoom, SRT in noise showed significant improvements compared to omnidirectional settings (p<0.05). Subjective feedback showed that 13 participants were satisfied with Naída Bimodal Hearing Solution, and wanted to continue using it after the trial.ConclusionThe Naída Bimodal Hearing Solution with the same pre-processing algorithm can provide satisfying hearing performance. Beamforming technology can further improve speech perception in noisy environments.展开更多
As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous ...As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.展开更多
The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cess...The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC.展开更多
Purpose: To analyze the effect of right versus left long-term single-sided deafness(SSD) on sound source localization(SSL), discuss the necessity of intervention and treatment for SSD patients, and analyze the therape...Purpose: To analyze the effect of right versus left long-term single-sided deafness(SSD) on sound source localization(SSL), discuss the necessity of intervention and treatment for SSD patients, and analyze the therapeutic effect of long-term unilateral cochlear implantation(UCI) from the perspective of SSL.Methods: This study included 25 patients with SSD, 11 patients with UCI, and 30 participants with normal hearing(NH). Their SSL ability was tested by obtaining their average root mean square(RMS) error values of SSL test.Results: The results showed that the RMS error value of SSD, UCI and NH groups were 52.26 ± 20.25°, 69.84 ±12.14° and 4.27 ± 2.66°, respectively. The ability of SSL was better in the SSD-L group than that in the SSD-R group, and no significant difference existed in the SSD-R and the UCI group.Conclusion: When bilateral deafness patients select unilateral treatment, right-side cochlear implantation may be more beneficial in terms of SSL, which means that the central auditory cortex in long-term SSD patients is affected differently based on which side their deafness occurs.展开更多
Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation pe...Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation performance of MCT.To solve the practical resource scheduling problem(RSP)in MCT efficiently,this paper has contributions to both the problem model and the algorithm design.Firstly,in the problem model,different from most of the existing studies that only consider scheduling part of the resources in MCT,we propose a unified mathematical model for formulating an integrated RSP.The new integrated RSP model allocates and schedules multiple MCT resources simultaneously by taking the total cost minimization as the objective.Secondly,in the algorithm design,a pre-selection-based ant colony system(PACS)approach is proposed based on graphic structure solution representation and a pre-selection strategy.On the one hand,as the RSP can be formulated as the shortest path problem on the directed complete graph,the graphic structure is proposed to represent the solution encoding to consider multiple constraints and multiple factors of the RSP,which effectively avoids the generation of infeasible solutions.On the other hand,the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-quality solution.To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,a set of test cases with different sizes is conducted.Experimental results and comparisons show the effectiveness and efficiency of the PACS algorithm,which can significantly outperform other state-of-the-art algorithms.展开更多
The prevalence of unilateral deafness(SSD)or asymmetric hearing loss(AHL)among patients with hearing impairments ranges from 7.2%to 15.0%,indicating a relatively significant proportion.However,these individuals often ...The prevalence of unilateral deafness(SSD)or asymmetric hearing loss(AHL)among patients with hearing impairments ranges from 7.2%to 15.0%,indicating a relatively significant proportion.However,these individuals often overlook their hearing loss,resulting in delayed or inadequate treatment.This oversight can lead to a lack of binaural summation and squelch effect,as well as the head shadow effect,which can significantly impact their speech recognition and sound localization abilities,especially in noisy environments.Recently,a groundbreaking Sound Bite™Pinyin® Bone Conduction Hearing Aid(HA)device has been has been introduced as a viable alternative to traditional percutaneous stimulation hearing assistance devices.This innovative device harnesses bone conduction technology to convey sound vibrations directly to the inner ear via the bones of the jaw and skull,effectively bypassing the air conduction pathway that is commonly compromised in individuals with hearing loss.This report details the evaluation and adjustment process of a HA device worn by a 31-year-old female patient who suffers from a congenital ossicular chain deformity in her right ear,while maintaining normal hearing in her left ear.The report comprehensively covers the hearing thresholds of the 31-year-old female patient on the day of fitting the hearing aid and one month later.It also presents assessments of the hearing aid’s performance through the Abbreviated Profile of Hearing Aid Benefit(APHAB)questionnaire,conducted three days after adjustment,one month later,and one year later.Furthermore,the report details the evaluation of the patient’s sound localization ability,comparing her performance before and after wearing the hearing aid device.Additionally,it includes measurements of her speech recognition ability for monosyllabic words and Yang Yang Ge words,which are specific tests in the Chinese language,conducted two years after the initial fitting of the hearing aid.The discovery that bone-anchored hearing devices can significantly enhance hearing thresholds in patients with unilateral conductive hearing loss represents a significant milestone.These devices not only improve speech recognition ability but also enhance sound localization in noisy environments.This improvement is accompanied by a high level of subjective satisfaction among patients,indicating a positive impact on their overall quality of life.展开更多
Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accompl...Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.展开更多
Acute sensorineural hearing loss is an uncommon phenomenon in dentistry.We describe the case of a 79-year-old male who presented with acute sensorineural hearing loss occurring 2 days after a tooth extraction procedur...Acute sensorineural hearing loss is an uncommon phenomenon in dentistry.We describe the case of a 79-year-old male who presented with acute sensorineural hearing loss occurring 2 days after a tooth extraction procedure under local anesthesia.Possible mechanisms are discussed.He was treated with vasodilators(Ginaton and Alprostadil Injection)and Mecobalamin injection with benefit.High dose oral steroids(1 mg/kg)and low molecular weight dextran were used.展开更多
An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the sev...An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the severe attenuation of radio signals in water,the STIN cannot be directly applied in underwater scenarios.In this paper we envision a framework of integrated radio-acoustic network arming at high-efficient data transmission in underwater scenarios,where acoustic signal is for underwater communication and radio signal is for surface and air communications.Since radio links have much higher data transmission rate and lower delay,in the integrated radio-acoustic network,the acoustic links easily become congested,at the same time the radio links are not fully utilized.We therefore propose that the integrated radio-acoustic network should be properly designed to minimize the hop count of acoustic links,as well as the signaling overhead in the acoustic subnetwork.We then present a novel network framework and the relative technologies to help moving the signaling overhead to the radio subnetwork.展开更多
In 2020,the COVID-19 pandemic spreads rapidly around the world.To accurately predict the number of daily new cases in each country,Lanzhou University has established the Global Prediction System of the COVID-19 Pandem...In 2020,the COVID-19 pandemic spreads rapidly around the world.To accurately predict the number of daily new cases in each country,Lanzhou University has established the Global Prediction System of the COVID-19 Pandemic(GPCP).In this article,the authors use the ensemble empirical mode decomposition(EEMD)model and autoregressive moving average(ARMA)model to improve the prediction results of GPCP.In addition,the authors also conduct direct predictions for those countries with a small number of confirmed cases or are in the early stage of the disease,whose development trends of the pandemic do not fully comply with the law of infectious diseases and cannot be predicted by the GPCP model.Judging from the results,the absolute values of the relative errors of predictions in countries such as Cuba have been reduced significantly and their prediction trends are closer to the real situations through the method mentioned above to revise the prediction results out of GPCP.For countries such as El Salvador with a small number of cases,the absolute values of the relative errors of prediction become smaller.Therefore,this article concludes that this method is more effective for improving prediction results and direct prediction.展开更多
This paper considered a multi-relay distributed cooperative system in which not only the source communicates with the destination,but also the relays have communication requests with the destination.In order to achiev...This paper considered a multi-relay distributed cooperative system in which not only the source communicates with the destination,but also the relays have communication requests with the destination.In order to achieve the requirements of simultaneous communication for the source and relays,we propose a distributed cooperative system based on orthogonal frequency division multiplexing with index modulation(OFDM-IM).In this system,the relay can communicate with the destination by superimposing its own signal over the inactive subcarriers on the decoded OFDM-IM signal.Upper bounds on the bit error rates of the source and the active relay are both derived in closed form,whose tightness is verified through simulation results.展开更多
The potential application of high-capacity Sn_(4)P_(3)anode for potassium-ion batteries(PIBs)is hindered by the poor cycle stability mainly rooted from the huge volume changes upon cycling and low electronic conduc-ti...The potential application of high-capacity Sn_(4)P_(3)anode for potassium-ion batteries(PIBs)is hindered by the poor cycle stability mainly rooted from the huge volume changes upon cycling and low electronic conduc-tivity.To address the above issues,sandwich-like struc-tured Sn_(4)P_(3)/Ti_(3)C_(2)T_(x)was designed and synthesized as anode material for PIBs.As a result,Sn_(4)P_(3)/Ti_(3)C_(2)T_(x)pre-sents superior cycle stability(retains a capacity of 103.2 mAh·g^(-1)even after 300 cycles at 1000 mA·g^(-1))and rate capability(delivers 60.7 mAh·g^(-1)at high current density of 2000 mA·g^(-1)).The excellent electrochemical perfor-mance of sandwich-like structured Sn_(4)P_(3)/Ti_(3)C_(2)Tx is orig-inated from the synergistic effect between Sn_(4)P_(3)and Ti_(3)C_(2)T_(x),where Ti_(3)C_(2)T_(x)acts as a conductive matrix to facilitate electron transfer and buffer the volume change of Sn_(4)P_(3)particles upon cycling,while Sn_(4)P_(3)serves as pillars to prevent the collapse and stacking of Ti_(3)C_(2)T_(x)sheets.Moreover,significant capacitive contribution is demonstrated as a major contributor to the excellent rate capability.展开更多
Background:Saccades are often observed on video head impulse tests(vHIT)in patients with Meniere's Disease(MD)and Vestibular Migraine(VM).However,their saccadic features are not fully described.Objective:This stud...Background:Saccades are often observed on video head impulse tests(vHIT)in patients with Meniere's Disease(MD)and Vestibular Migraine(VM).However,their saccadic features are not fully described.Objective:This study aims to identify the saccades characteristics of MD and VM.Methods:75 VM patients and 103 definite unilateral MD patients were enrolled in this study.First raw saccades were exported and analyzed.The VM patients were divided into left and right based on their ears,while the MD patients were separated into affected and unaffected subgroups based on their audiograms and symptoms.Results:The MD patients have more saccades on the affected side(85%vs.69%),and saccade velocity is more consistent than the contralateral side(shown by the coefficient of variation).The saccades occurrence rates on both sides are similar in VM(77%vs.76%),as are other saccadic parameters.The MD patients have more significant inter-aural differences than the VM patients,manifested in higher velocity(p-value 0.000),earlier arriving(p-value 0.010),and more time-domain gathered(p-value 0.003)on the affected side.Conclusions:Bilateral saccades are commonly observed in MD and VM.In contrast to MD,saccades on VM are subtle,scattered,and late-arrived.Furthermore,the MD patients showed inconsistent saccadic distribution with more velocity-uniform saccades on the affected side.展开更多
基金funded in part by the National Natural Science Foundation of China under Grant 62401167 and 62192712in part by the Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources,P.R.China under Grant MESTA-2023-B001in part by the Stable Supporting Fund of National Key Laboratory of Underwater Acoustic Technology under Grant JCKYS2022604SSJS007.
文摘The Underwater Acoustic(UWA)channel is bandwidth-constrained and experiences doubly selective fading.It is challenging to acquire perfect channel knowledge for Orthogonal Frequency Division Multiplexing(OFDM)communications using a finite number of pilots.On the other hand,Deep Learning(DL)approaches have been very successful in wireless OFDM communications.However,whether they will work underwater is still a mystery.For the first time,this paper compares two categories of DL-based UWA OFDM receivers:the DataDriven(DD)method,which performs as an end-to-end black box,and the Model-Driven(MD)method,also known as the model-based data-driven method,which combines DL and expert OFDM receiver knowledge.The encoder-decoder framework and Convolutional Neural Network(CNN)structure are employed to establish the DD receiver.On the other hand,an unfolding-based Minimum Mean Square Error(MMSE)structure is adopted for the MD receiver.We analyze the characteristics of different receivers by Monte Carlo simulations under diverse communications conditions and propose a strategy for selecting a proper receiver under different communication scenarios.Field trials in the pool and sea are also conducted to verify the feasibility and advantages of the DL receivers.It is observed that DL receivers perform better than conventional receivers in terms of bit error rate.
基金supported by grants from Capital’s Funds for Health Improvement and Research(No.2022-1-2023)the National Natural Science Foundation of China(No.82371148)Open project National Clinical Research Center for Otolaryngologic Diseases(202200010).
文摘PurposeThe purpose of the study was to investigate the effect of bimodal beamforming on speech recognition and comfort for cochlear implant (CI) users with the bimodal hearing solution made up by linking a hearing aid to the CI sound processor.Methods19 subjects participated in this study. Speech tests were conducted in quiet and in noisy environments, with the target speech presented from 0° and the noise signal from 45°. Speech recognition thresholds (SRTs) were compared among the previously used bimodal hearing configuration (baseline, any CI sound processor plus any hearing aid), the Naída Bimodal Hearing Solution with omnidirectional microphone, and with directional microphone (so called StereoZoom) switched on. In addition, the study participants provided subjective feedback on their hearing impressions.ResultsThe SRT results showed no significant difference among the three hearing conditions in the quiet environment. No significant improvement was reported when using Naída bimodal system with omnidirectional microphone in noise compared to the baseline (p=0.27). When applying StereoZoom, SRT in noise showed significant improvements compared to omnidirectional settings (p<0.05). Subjective feedback showed that 13 participants were satisfied with Naída Bimodal Hearing Solution, and wanted to continue using it after the trial.ConclusionThe Naída Bimodal Hearing Solution with the same pre-processing algorithm can provide satisfying hearing performance. Beamforming technology can further improve speech perception in noisy environments.
基金supported by the National key research and development program (2019YFA0607104)National Natural Science Foundation of China (Grant Nos. 41991231, 42275034, 41975076, 42075029, 42075017, and 42075018)the Gansu Provincial Science and Technology Project (22JR5RA405)。
文摘As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.
基金supported in part by the National Natural Science Foundation of China under Grant 61901128,62273109the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB510032).
文摘The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC.
基金supported by the National Key Research and Development Project of China(2020YFC20052003 to S.M.Yang)Key International(Regional)Joint Research Program of National Natural Science Foundation of China(NSFC#81820108009 to S.M.Yang)National Natural Science Foundation of China(NSFC#82000976 to J.N.Li).
文摘Purpose: To analyze the effect of right versus left long-term single-sided deafness(SSD) on sound source localization(SSL), discuss the necessity of intervention and treatment for SSD patients, and analyze the therapeutic effect of long-term unilateral cochlear implantation(UCI) from the perspective of SSL.Methods: This study included 25 patients with SSD, 11 patients with UCI, and 30 participants with normal hearing(NH). Their SSL ability was tested by obtaining their average root mean square(RMS) error values of SSL test.Results: The results showed that the RMS error value of SSD, UCI and NH groups were 52.26 ± 20.25°, 69.84 ±12.14° and 4.27 ± 2.66°, respectively. The ability of SSL was better in the SSD-L group than that in the SSD-R group, and no significant difference existed in the SSD-R and the UCI group.Conclusion: When bilateral deafness patients select unilateral treatment, right-side cochlear implantation may be more beneficial in terms of SSL, which means that the central auditory cortex in long-term SSD patients is affected differently based on which side their deafness occurs.
基金This research was supported in part by the National Key Research and Development Program of China under Grant 2022YFB3305303in part by the National Natural Science Foundations of China(NSFC)under Grant 62106055+1 种基金in part by the Guangdong Natural Science Foundation under Grant 2022A1515011825in part by the Guangzhou Science and Technology Planning Project under Grants 2023A04J0388 and 2023A03J0662.
文摘Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation performance of MCT.To solve the practical resource scheduling problem(RSP)in MCT efficiently,this paper has contributions to both the problem model and the algorithm design.Firstly,in the problem model,different from most of the existing studies that only consider scheduling part of the resources in MCT,we propose a unified mathematical model for formulating an integrated RSP.The new integrated RSP model allocates and schedules multiple MCT resources simultaneously by taking the total cost minimization as the objective.Secondly,in the algorithm design,a pre-selection-based ant colony system(PACS)approach is proposed based on graphic structure solution representation and a pre-selection strategy.On the one hand,as the RSP can be formulated as the shortest path problem on the directed complete graph,the graphic structure is proposed to represent the solution encoding to consider multiple constraints and multiple factors of the RSP,which effectively avoids the generation of infeasible solutions.On the other hand,the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-quality solution.To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,a set of test cases with different sizes is conducted.Experimental results and comparisons show the effectiveness and efficiency of the PACS algorithm,which can significantly outperform other state-of-the-art algorithms.
基金supported by grants from Open project National Clinical Research Center for Otolaryngologic Diseases(202200010)Capital’s Funds for Health Improvement and Research(No.2022-1-2023).
文摘The prevalence of unilateral deafness(SSD)or asymmetric hearing loss(AHL)among patients with hearing impairments ranges from 7.2%to 15.0%,indicating a relatively significant proportion.However,these individuals often overlook their hearing loss,resulting in delayed or inadequate treatment.This oversight can lead to a lack of binaural summation and squelch effect,as well as the head shadow effect,which can significantly impact their speech recognition and sound localization abilities,especially in noisy environments.Recently,a groundbreaking Sound Bite™Pinyin® Bone Conduction Hearing Aid(HA)device has been has been introduced as a viable alternative to traditional percutaneous stimulation hearing assistance devices.This innovative device harnesses bone conduction technology to convey sound vibrations directly to the inner ear via the bones of the jaw and skull,effectively bypassing the air conduction pathway that is commonly compromised in individuals with hearing loss.This report details the evaluation and adjustment process of a HA device worn by a 31-year-old female patient who suffers from a congenital ossicular chain deformity in her right ear,while maintaining normal hearing in her left ear.The report comprehensively covers the hearing thresholds of the 31-year-old female patient on the day of fitting the hearing aid and one month later.It also presents assessments of the hearing aid’s performance through the Abbreviated Profile of Hearing Aid Benefit(APHAB)questionnaire,conducted three days after adjustment,one month later,and one year later.Furthermore,the report details the evaluation of the patient’s sound localization ability,comparing her performance before and after wearing the hearing aid device.Additionally,it includes measurements of her speech recognition ability for monosyllabic words and Yang Yang Ge words,which are specific tests in the Chinese language,conducted two years after the initial fitting of the hearing aid.The discovery that bone-anchored hearing devices can significantly enhance hearing thresholds in patients with unilateral conductive hearing loss represents a significant milestone.These devices not only improve speech recognition ability but also enhance sound localization in noisy environments.This improvement is accompanied by a high level of subjective satisfaction among patients,indicating a positive impact on their overall quality of life.
文摘目的:研究中药石香膏对于糖尿病大鼠慢性难愈合创面的晚期糖基化终末产物受体(RAGE)/转录因子-κBp65(NF-κBp65)/内皮型一氧化氮合酶(e NOS) mRNA表达的影响。方法:将50只SD级清洁大鼠按随机数字表法分为正常组、正常对照组、难愈合组、贝复济组、石香膏组5组,每组每时间点(7 d/14 d) 5只。造模成功后,贝复济组创面外用贝复济溶液,石香膏组创面外敷石香膏。第7/14天取大鼠背部创面肉芽组织标本,荧光定量PCR法检测RAGE/NF-κBp65/e NOS mRNA表达水平。结果:干预7 d后,与难愈合组比较,贝复济组和石香膏组中RAGE/NF-κBp65 mRNA相对表达量降低,e NOS mRNA相对表达量升高,差异有统计学意义。与贝复济组比较,石香膏组中RAGE/NF-κBp65 mRNA相对表达量降低,e NOS mRNA升高,差异有统计学意义。干预14 d后,与贝复济组比较,石香膏组RAGE/NF-κBp65 mRNA相对表达量降低,差异有统计学意义。结论:石香膏可抑制糖尿病大鼠慢性难愈合创面中RAGE/NF-κBp65 mRNA表达,促进e NOS mRNA的表达,对于创面修复具有显著作用。
基金supported in part by the National Natural Science Foundation of China under Grants 61971149,61431005,and 61971198in part by the Natural Science Foundation of Guangdong Province under Grant 2016A030308006+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011040in part by the Young Innovative Talents Project of Guangdong Province under Grant 2018GkQNCX118.
文摘Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.
基金supported by grants from the Youth cultivation project of military medical science(16QNP133)Medical big data research and development project of PLA general hospital(2018MBD-015)+3 种基金the capital health research and development of special project(2016-1-5014)the National Natural Science Foundation of China(81670940,81770991)Financial supports from the Beijing Nova Program(xxjh2015105)clinical support fund of General Hospital of the PLA are acknowledged
文摘Acute sensorineural hearing loss is an uncommon phenomenon in dentistry.We describe the case of a 79-year-old male who presented with acute sensorineural hearing loss occurring 2 days after a tooth extraction procedure under local anesthesia.Possible mechanisms are discussed.He was treated with vasodilators(Ginaton and Alprostadil Injection)and Mecobalamin injection with benefit.High dose oral steroids(1 mg/kg)and low molecular weight dextran were used.
基金the National Key Research and Development Program of China under grant 2020YFB1807700the National Natural Science Foundation of China under Grants U1701265,U1809211Key Program of Marine Economy Development,Department of Natural Resources of Guangdong Province under Grant YZRZH[2020]009。
文摘An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the severe attenuation of radio signals in water,the STIN cannot be directly applied in underwater scenarios.In this paper we envision a framework of integrated radio-acoustic network arming at high-efficient data transmission in underwater scenarios,where acoustic signal is for underwater communication and radio signal is for surface and air communications.Since radio links have much higher data transmission rate and lower delay,in the integrated radio-acoustic network,the acoustic links easily become congested,at the same time the radio links are not fully utilized.We therefore propose that the integrated radio-acoustic network should be properly designed to minimize the hop count of acoustic links,as well as the signaling overhead in the acoustic subnetwork.We then present a novel network framework and the relative technologies to help moving the signaling overhead to the radio subnetwork.
基金This work was jointly supported by the National Natural Science Foundation of China[grant numbers 41521004 and 41875083]the Gansu Provincial Special Fund Project for Guiding Scientific and Technological Innovation and Development[grant number 2019ZX-06].
文摘In 2020,the COVID-19 pandemic spreads rapidly around the world.To accurately predict the number of daily new cases in each country,Lanzhou University has established the Global Prediction System of the COVID-19 Pandemic(GPCP).In this article,the authors use the ensemble empirical mode decomposition(EEMD)model and autoregressive moving average(ARMA)model to improve the prediction results of GPCP.In addition,the authors also conduct direct predictions for those countries with a small number of confirmed cases or are in the early stage of the disease,whose development trends of the pandemic do not fully comply with the law of infectious diseases and cannot be predicted by the GPCP model.Judging from the results,the absolute values of the relative errors of predictions in countries such as Cuba have been reduced significantly and their prediction trends are closer to the real situations through the method mentioned above to revise the prediction results out of GPCP.For countries such as El Salvador with a small number of cases,the absolute values of the relative errors of prediction become smaller.Therefore,this article concludes that this method is more effective for improving prediction results and direct prediction.
基金supported in part by National Natural Science Foundation of China under Grants 61871190,U1809211 and 61771202in part by Key Program of Marine Economy Development(Six Marine Industries)Special Foundation of Department of Natural Resources of Guangdong Province(GDNRC[2020]009)in part by the Fundamental Research Funds for the Central Universities under No.2019SJ02。
文摘This paper considered a multi-relay distributed cooperative system in which not only the source communicates with the destination,but also the relays have communication requests with the destination.In order to achieve the requirements of simultaneous communication for the source and relays,we propose a distributed cooperative system based on orthogonal frequency division multiplexing with index modulation(OFDM-IM).In this system,the relay can communicate with the destination by superimposing its own signal over the inactive subcarriers on the decoded OFDM-IM signal.Upper bounds on the bit error rates of the source and the active relay are both derived in closed form,whose tightness is verified through simulation results.
基金financially supported by the National Natural Science Foundation of China (No. 52100084)Shenzhen Natural Science Fund (No. GXWD2020123015542700320200824094017001)
文摘The potential application of high-capacity Sn_(4)P_(3)anode for potassium-ion batteries(PIBs)is hindered by the poor cycle stability mainly rooted from the huge volume changes upon cycling and low electronic conduc-tivity.To address the above issues,sandwich-like struc-tured Sn_(4)P_(3)/Ti_(3)C_(2)T_(x)was designed and synthesized as anode material for PIBs.As a result,Sn_(4)P_(3)/Ti_(3)C_(2)T_(x)pre-sents superior cycle stability(retains a capacity of 103.2 mAh·g^(-1)even after 300 cycles at 1000 mA·g^(-1))and rate capability(delivers 60.7 mAh·g^(-1)at high current density of 2000 mA·g^(-1)).The excellent electrochemical perfor-mance of sandwich-like structured Sn_(4)P_(3)/Ti_(3)C_(2)Tx is orig-inated from the synergistic effect between Sn_(4)P_(3)and Ti_(3)C_(2)T_(x),where Ti_(3)C_(2)T_(x)acts as a conductive matrix to facilitate electron transfer and buffer the volume change of Sn_(4)P_(3)particles upon cycling,while Sn_(4)P_(3)serves as pillars to prevent the collapse and stacking of Ti_(3)C_(2)T_(x)sheets.Moreover,significant capacitive contribution is demonstrated as a major contributor to the excellent rate capability.
基金supported by grants from National Key Research and Development Program of China-part3(2020YFC2005203)Capital's Funds for Health Improvement and Research(No.2022-1-2023).
文摘Background:Saccades are often observed on video head impulse tests(vHIT)in patients with Meniere's Disease(MD)and Vestibular Migraine(VM).However,their saccadic features are not fully described.Objective:This study aims to identify the saccades characteristics of MD and VM.Methods:75 VM patients and 103 definite unilateral MD patients were enrolled in this study.First raw saccades were exported and analyzed.The VM patients were divided into left and right based on their ears,while the MD patients were separated into affected and unaffected subgroups based on their audiograms and symptoms.Results:The MD patients have more saccades on the affected side(85%vs.69%),and saccade velocity is more consistent than the contralateral side(shown by the coefficient of variation).The saccades occurrence rates on both sides are similar in VM(77%vs.76%),as are other saccadic parameters.The MD patients have more significant inter-aural differences than the VM patients,manifested in higher velocity(p-value 0.000),earlier arriving(p-value 0.010),and more time-domain gathered(p-value 0.003)on the affected side.Conclusions:Bilateral saccades are commonly observed in MD and VM.In contrast to MD,saccades on VM are subtle,scattered,and late-arrived.Furthermore,the MD patients showed inconsistent saccadic distribution with more velocity-uniform saccades on the affected side.