Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed d...Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed dataset of the magnetic field.However,the simultaneous fitting of these parameters often leads to multiple local optimal parameter sets.To address this fitting dilemma,Rong ZJ et al.(2021)recently developed a current loop model.This technique can successively separate and invert the loop parameters.Here,we further show how this technique can be reduced and modified to fit a dipole model.Applications of this reduced technique to the International Geomagnetic Reference Field model and the Martian crustal field model highlight its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly,a capability that sets it apart from existing methods.The potential impact of this technique on geomagnetism and planetary magnetism is significant,given its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly.展开更多
Research on the interstellar medium and its interaction with the solar system constitutes a significant topic in planetary physics.As the Sun traverses the local interstellar cloud,interstellar neutrals penetrate the ...Research on the interstellar medium and its interaction with the solar system constitutes a significant topic in planetary physics.As the Sun traverses the local interstellar cloud,interstellar neutrals penetrate the heliosphere,forming the interstellar wind,and scattering solar extreme ultraviolet(EUV)emission lines.The intensity of the scattered radiation provides an indicator of the characteristic parameters of the interstellar wind,crucial for characterizing the heliosphere,the interstellar medium,and the evolution of the solar system.Meanwhile,a powerful method for studying stellar evolution is investigating the EUV emissions of stars.The only ongoing mission conducting an EUV full-sky survey is the relay satellite Queqiao-2.Due to the strong absorption of the interstellar medium at EUV wavelengths,modelling is essential to any study of these influences.In this study,we reviewed classical modelling methods for the density distribution of the interstellar helium atoms in the heliosphere,and the corresponding 58.4 nm radiation intensity.We established distinct density and intensity models for different orbital positions of Earth’s revolution.We found that when the Earth enters the helium focusing cone in the downwind region,both the helium density and the 58.4 nm radiation intensity increase rapidly,with the temperature effect being particularly important.The radiation intensity in the downwind direction can be 170 times that of the upwind direction.Some negligible factors were omitted for simplicity,such as the effects of the solar line width and Doppler shift.Our research can serve as an aid to the interpretation of the EUV observations in the full-sky survey conducted by Queqiao-2.展开更多
The Sun is the primary energy source driving the Earth's climate system.A prevailing hypothesis suggests that even minor variations in solar activity,when amplified by climate system feedback mechanisms,can induce...The Sun is the primary energy source driving the Earth's climate system.A prevailing hypothesis suggests that even minor variations in solar activity,when amplified by climate system feedback mechanisms,can induce significant climatic changes on decadal to centennial timescales.However,the limited availability of historical winter climate proxies has impeded consensus on how solar variability influences the long-term winter climate in Northeast Asia,particularly during Grand Solar Minima(GMs).In this study,we analyzed daily-resolution snowfall records in Seoul from 1625 to 1907 CE,derived from the Korean official historical chronicle Seungjeongweon Ilgi.This period encompasses both the Maunder Minimum(1645–1715 CE)and the Dalton Minimum(1790–1830 CE)of solar activity.Our findings indicate that during the GMs,the first date of annual snowfall(FDS)was delayed by approximately 10 days,and the average annual snowfall frequency(ASF)was reduced by half compared to non-GM periods.Additionally,while an 11-year solar cycle was evident in the ASF during non-GM periods,this cycle was replaced by a shortened 8-to 9-year cycle during the GMs.These variations suggest a differential regional climatic response to prolonged changes in solar activity,and provide historical insights that enhance our understanding of the potential impact of low solar activity on the winter climate in Northeast Asia.展开更多
This paper statistically analyzes the seeing data at the Lenghu site Platform C from 2018 to 2024,during which extensive construction modified the original landscape.The study focuses on the impacts of meteorological ...This paper statistically analyzes the seeing data at the Lenghu site Platform C from 2018 to 2024,during which extensive construction modified the original landscape.The study focuses on the impacts of meteorological factors and building obstructions.The results reveal a progressive degradation in seeing as the monitoring setup passively changed:the median values were 0."76(the original location),0."83 during the Terrace,and 0."99 at the new Dome(temporarily considered the permanent monitoring location).Once the instruments are fully deployed,wind speed and wind direction critically affect seeing quality,with optimal conditions occurring when the wind speed is 2–6 m s^(−1) and the wind direction is between 180°and 270°.However,in 2023 and 2024,the wind speeds decreased,and the prevailing wind direction shifted from southwest to northwest,correlating with poorer seeing.Computational Fluid Dynamics simulations reveal that the construction of the Wide Field Survey Telescope altered the local wind field,increasing turbulence around the Dome,especially when the winds blow from 225°to 255°.In contrast,Platform A,located in a higher and more open area,consistently maintained better seeing,particularly after midnight,likely due to fewer obstructions and lower nocturnal heat release.展开更多
α_(1)-Adrenergic receptor(AR)blockers can be effective for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms(BPH/LUTS),their usage is limited by cardiovascular-related side effects that are c...α_(1)-Adrenergic receptor(AR)blockers can be effective for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms(BPH/LUTS),their usage is limited by cardiovascular-related side effects that are caused by the subtype nonselective nature or low selectivity of many current drugs.We previously reported that phenylpiperazine analogues with amide and propane linker were moderateα_(1D/1A)adrenoceptor antagonists and exhibited better anti-BPH effect than lead compound naftopidil(NAF)in vivo,however,with modestα_(1D/1A)-subtype selectivity.Herein,we replaced propane moiety with2-hydroxypropanol linker and synthesized twenty-seven racemic derivatives with modified aromatic and hetero aromatic groups.Of these new compounds,quinoline surrogate 17 exhibited extremely weak antagonistic affinity onα_(1B)in both cell-based calcium assay and tissue-based functional assay,so that elicited significantα_(1A/1B)andα_(1D/1B)selectivity.Intriguingly,the R enantiomer of 17 preferentially displayed superior anti-BPH effect in rat model compared with S-17,supporting ligand regulates the receptor in a highly stereospecific manner.Finally,the computer-aided modelling research was also performed in order to deeply understand the unique binding mode of R-17 in complex withα_(1A)and the subtype receptor selectivity for R-17 was also rationalized in this study.Taken together,our work enriched the diversity of phenylpiperazines for the treatment of BPH/LUTS,and provided a basis for discovery ofα_(1D/1A)-selective ligands.展开更多
Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a ...Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a valuable genetic resource for wheat disease resistance breeding programs.We developed three hexaploid pre-breeding lines with PM resistance genes derived from three WEW accessions.These resistant pre-breeding lines were crossed with susceptible common wheat accessions.Segregations in the F2populations were 3 resistant:1 susceptible,suggesting a single dominant allele in each resistant parent.Mapping of the resistance gene in each line indicated a single locus on the long arm of chromosome 7A,at the approximate location of previously cloned Pm60 from T.urartu.Sanger sequencing revealed three different Pm60 haplotypes(Hap 3,Hap 5,and Hap 6).Co-segregating diagnostic markers were developed for identification and selection of each haplotype.The resistance function of each haplotype was verified by the virus-induced gene silencing(VIGS).Common wheat lines carrying each of these Pm60 haplotypes were resistant to most Bgt isolates and differences in the response arrays suggested allelic variation in response.展开更多
Indium selenide has garnered significant attention for high volumetric capacities,but is currently plagued by the sluggish charge transfer kinetics,severe volume effect,and rapid capacity degradation that hinder their...Indium selenide has garnered significant attention for high volumetric capacities,but is currently plagued by the sluggish charge transfer kinetics,severe volume effect,and rapid capacity degradation that hinder their practical applications.Herein,we design,synthesize,and characterize a multi-kernel-shell structure comprised of indium selenide encapsulated within carbon nanospheres(referred to as m-K-S In_(2)Se_(3)@C)through an integrated approach involving a hydrothermal method followed by a gaseous selenization process.Importantly,experimental measurements and density functional theory calculations confirm that the m-K-S In_(2)Se_(3)@C not only improve the adsorption capability for Li-ions but also lower the energy barrier for Li-ions diffusion.Profiting from numerous contact points,shorter diffusion distances and an improved volume buffering effect,the m-K-S In_(2)Se_(3)@C achieves an 800 mA h g^(−1)capacity over 1000 loops at 1000 mA g^(−1),a 520 mA h g^(−1)capacity at 5000 mA g^(−1)and an energy density of 270 Wh kg^(−1)when coupled with LiFePO4,surpassing most related anodes reported before.Broadly,the m-K-S structure with unique nano-micro structure offers a new approach to the design of advanced anodes for LIBs.展开更多
Jupiter is one of the top priorities for deep space exploration in China and other countries.The structure of Jupiter’s interior,in particular,is a crucial but still unclear scientific topic.This paper discusses curr...Jupiter is one of the top priorities for deep space exploration in China and other countries.The structure of Jupiter’s interior,in particular,is a crucial but still unclear scientific topic.This paper discusses current scientific understanding of Jupiter’s interior by summarizing the history of past and current exploration and data analysis.We review recent space-based and ground-based observation methods and analyze their feasibility.To gain new insight into the internal structure of Jupiter,we propose to study Jupiter’s innards by planetary seismology.Ground-based observation,namely the Jupiter Seismologic Interferometer Polarization Imager(SIPI)in Lenghu,will be developed to obtain the Doppler velocity distribution on the surface of Jupiter and identify oscillation signals.Lenghu has observation conditions that are not only exceptional in China but even in the world,capable of providing novel insight into the interior of Jupiter.This will also be the first study in China of the interior of Jupiter using asteroseismology,which has significant implications for China’s plans to explore Jupiter via spacecraft-mounted instruments.展开更多
Sunlight-driven photocatalytic water-splitting for hydrogen(H2)evolution is a desirable strategy to utilize solar energy.However,this strategy is restricted by insufficient light harvesting and high photogenerated ele...Sunlight-driven photocatalytic water-splitting for hydrogen(H2)evolution is a desirable strategy to utilize solar energy.However,this strategy is restricted by insufficient light harvesting and high photogenerated electron-hole recombination rates of TiO2-based photocatalysts.Here,a graphene-modified WO3/TiO2 step-scheme heterojunction(S-scheme heterojunction)composite photocatalyst was fabricated by a facile one-step hydrothermal method.In the ternary composite,TiO2 and WO3 nanoparticles adhered closely to reduced graphene oxide(rGO)and formed a novel S-scheme heterojunction.Moreover,rGO in the composite not only supplied abundant adsorption and catalytically active sites as an ideal support but also promoted electron separation and transfer from the conduction band of TiO2 by forming a Schottky junction between TiO2 and rGO.The positive cooperative effect of the S-scheme heterojunction formed between WO3 and TiO2 and the Schottky heterojunction formed between TiO2 and graphene sheets suppressed the recombination of relatively useful electrons and holes.This effect also enhanced the light harvesting and promoted the reduction reaction at the active sites.Thus,the novel ternary WO3/TiO2/rGO composite demonstrated a remarkably enhanced photocatalytic H2 evolution rate of 245.8μmol g^-1 h^-1,which was approximately 3.5-fold that of pure TiO2.This work not only presents a low-cost graphene-based S-scheme heterojunction photocatalyst that was obtained via a feasible one-step hydrothermal approach to realize highly efficient H2 generation without using noble metals,but also provides new insights into the design of novel heterojunction photocatalysts.展开更多
Aiming at the global design issue of transpiration cooling thermal protection system,a self-driven circulation loop is proposed as the internal coolant flow passage for the transpiration cooling structure to achieve a...Aiming at the global design issue of transpiration cooling thermal protection system,a self-driven circulation loop is proposed as the internal coolant flow passage for the transpiration cooling structure to achieve adaptive cooling.To enhance the universality of this internal cooling pipe design and facilitate its application,numerical studies are conducted on this systemwith four commonly used cooling mediums as coolant.Firstly,the accuracy of the numerical method is verified through an established experimental platform.Then,transient numerical simulations are performed on the flow states of different cooling mediums in the new self-circulation system.Based on the numerical result,the flow,phase change,and heat transfer characteristics of different cooling mediums are analyzed.Differences in fluid velocity and latent heat of phase change result in significant variation in heat exchange capacity among different coolingmediums,with the maximumdifference reaching up to 3 times.Besides,faster circulation speed leads to greater heat transfer capacity,with a maximum of 7600 W/m^(2).Consequently,the operating mechanism and cooling laws of the natural circulation system is further investigated,providing a reference for the practical application of this system.展开更多
Aiming at the characteristics of the practical steelmaking process, a hybrid model based on ladle heat sta- tus and artificial neural network has been proposed to predict molten steel temperature. The hybrid model cou...Aiming at the characteristics of the practical steelmaking process, a hybrid model based on ladle heat sta- tus and artificial neural network has been proposed to predict molten steel temperature. The hybrid model could over- come the difficulty of accurate prediction using a single mathematical model, and solve the problem of lacking the consideration of the influence of ladle heat status on the steel temperature in an intelligent model. By using the hybrid model method, forward and backward prediction models for molten steel temperature in steelmaking process are es- tablished and are used in a steelmaking plant. The forward model, starting from the end-point of BOF, predicts the temperature in argon-blowing station, starting temperature in LF, end temperature in LF and tundish temperature forwards, with the production process evolving. The backward model, starting from the required tundish tempera- ture, calculates target end temperature in LF, target starting temperature in LF, target temperature in argon-blo- wiag station and target BOF end-point temperature backwards. Actual application results show that the models have better prediction accuracy and are satisfying for the process of practical production.展开更多
AIM:To evaluate the effects of diazoxide on ischemia/reperfusion(I/R)-injured hepatocytes and further elucidate its underlying mechanisms.METHODS:Male Sprague-Dawley rats were randomized(8 for donor and recipient per ...AIM:To evaluate the effects of diazoxide on ischemia/reperfusion(I/R)-injured hepatocytes and further elucidate its underlying mechanisms.METHODS:Male Sprague-Dawley rats were randomized(8 for donor and recipient per group)into five groups:I/R group(4 h of liver cold ischemia followed by 6 h of reperfusion);heme oxygenase-1(HO-1)small interfering RNA(siRNA)group(injection of siRNA via donor portal vein 48 h prior to harvest);diazoxide(DZ) group(injection of DZ via donor portal vein 10 min prior to harvest);HO-1 siRNA+DZ group;and siRNA control group.Blood and liver samples were collected at 6 h after reperfusion.The mRNA expressions and protein levels of HO-1 were determined by reverse transcription polymerase chain reaction and Western blotting,and tissue morphology was examined by light and transmission electron microscopy.Serum transaminases level and cytokines concentration were also measured.RESULTS:We observed that a significant reduction of HO-1 mRNA and protein levels in HO-1 siRNA and HO-1 siRNA+DZ group when compared with I/R group,while the increases were prominent in the DZ group.Light and transmission electron microscopy indicated severe disruption of tissue with lobular distortion and mitochondrial cristae damage in the HO-1 siRNA and HO-1 siRNA+DZ groups compared with DZ group.Serum alanine aminotransferase,aspartate transaminase,tumor necrosis factor-αand interleukin-6 levels increased in the HO-1 siRNA and HO-1 siRNA+DZ groups,and decreased in the DZ group.CONCLUSION:The protective effect of DZ may be induced by upregulation of HO-1.By inhibiting expression of HO-1,this protection pretreated with DZ was abolished.展开更多
Hereditary gingival fibromatosis(HGF)is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity.Five distinct loci related to non-syndromic HGF have bee...Hereditary gingival fibromatosis(HGF)is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity.Five distinct loci related to non-syndromic HGF have been identified;however,only two diseasecausing genes,SOS1 and REST,inducing HGF have been identified at two loci,GINGF1 and GINGF5,respectively.Here,based on a family pedigree with 26 members,including nine patients with HGF,we identified double heterozygous pathogenic mutations in the ZNF513(c.C748T,p.R250W)and KIF3C(c.G1229A,p.R410H)genes within the GINGF3 locus related to HGF.Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo.ZNF513,a transcription factor,binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts.Furthermore,a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513(p.R250W)or Kif3c(p.R412H)alone do not led to clear phenotypes with gingival fibromatosis,whereas the double mutations led to gingival hyperplasia phenotypes.In addition,we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1.Moreover,the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels.ZNF513 combined with KIF3C regulates gingival fibroblast proliferation,migration,and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways.In summary,these results demonstrate ZNF513+KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.展开更多
High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density great...High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.展开更多
Alfalfa(Medicago sativa L.)is the most widely grown forage legume crop worldwide.Yield and plant height are important agronomic traits influenced by genetic and environmental factors.The objective of this study was to...Alfalfa(Medicago sativa L.)is the most widely grown forage legume crop worldwide.Yield and plant height are important agronomic traits influenced by genetic and environmental factors.The objective of this study was to identify quantitative trait loci(QTL)and molecular markers associated with alfalfa yield and plant height.To understand the genetic basis of these traits,a full-sib F1 population composed of 392 individuals was developed by crossing a low-yielding precocious alfalfa genotype(male parent)with a high-yielding latematuring alfalfa cultivar(female parent).The linkage maps were constructed with 3818 single-nucleotide polymorphism(SNP)markers on 64 linkage groups.QTL for yield and plant height were mapped using phenotypic data for three years.Sixteen QTL associated with yield and plant height were identified on chromosomes 1 to 8.Six QTL explained more than 10%of phenotypic variation,representing major loci controlling yield and plant height.One locus on chromosome 1 controlling yield traits had not been identified in previous studies.Three QTL co-located with other QTL(qyield-1 and qheight-7,qheight-5 and qyield-4,qheight-6,and qyield-6).With further validation,the markers closely linked with these QTL may be used for marker-assisted selection in breeding new alfalfa varieties with high yield.展开更多
Polyaluminum chloride was synthesized with a membrane reactor,in which NaOH was added into AlCl 3 solution through the membrane’s micropores to reduce the NaOH droplets size.The content of the most efficient species ...Polyaluminum chloride was synthesized with a membrane reactor,in which NaOH was added into AlCl 3 solution through the membrane’s micropores to reduce the NaOH droplets size.The content of the most efficient species increased to about 80%.The process characteristics in the reaction (i.e.,flow velocity,pressure drop),and membrane fouling and cleaning were investigated.The evolution of both flow velocity and pressure drop during the reaction were related to changes in species distribution and solution viscosity.The process characteristics were well interpreted in terms of the Bernoulli equation.After reaction,the membranes were recovered by cleaning with diluted hydrochloride acid.This study is crucial for process design and scale-up of membrane reactors.展开更多
This research was designed to assess the changes in anthocyanin content in grape skins of Vitis amurensis and to explore m RNA transcriptions of 11 structural genes(PAL,CHS3, CHI1, F3H2, F30 H, F3050 H, DFR, LDOX, UF...This research was designed to assess the changes in anthocyanin content in grape skins of Vitis amurensis and to explore m RNA transcriptions of 11 structural genes(PAL,CHS3, CHI1, F3H2, F30 H, F3050 H, DFR, LDOX, UFGT,OMT and GST) related to anthocyanin biosynthesis during grape berry development, by the use of HPLC-MS/MS and real-time Q-PCR analysis. Accumulation of anthocyanins began at veraison, continued throughout the later berry development and reached a peak at maturity. Veraison is the time when the berries turn from green to purple. Expression of PAL, CHI1, and LDOX were up-regulated from 2 to4 weeks after flowering(WAF), down-regulated from6 WAF to veraison, whereas DFR was up-regulated at8 WAF, and then up-regulated from veraison to maturity.CHS3, F3050 H, UFGT, GST, and OMT were down-regulated from 2 WAF to veraison, and then up-regulated from veraison to maturity. The transcriptional expressions of the11 structural genes also showed positive correlations with the anthocyanin content from veraison to maturity. Positive correlations were also observed between OMT transcriptional level and the content of methoxyl-anthocyanins, and between F3050 H transcriptional level and the content of delphinidin anthocyanins. F3H2 and F30 H expression was up-regulated at 2 WAF. F3H2 expression was down-regulated from 4 WAF to veraison and then up-regulated again from veraison to maturity. F30 H expression was down-regulated at 4 WAF and then up-regulated again from 6 WAF to maturity. F30 H transcriptional level was correlated positively with the cyanidin anthocyanin concentration from veraison to maturity. These results indicate that the onset of anthocyanin synthesis during berry development coincides with a coordinated increase in the expression of a number of genes in the anthocyanin biosynthetic pathway.展开更多
The process of development and calibration for the first Moon-based ex- treme ultraviolet (EUV) camera to observe Earth's plasmasphere is introduced and the design, test and calibration results are presented. The E...The process of development and calibration for the first Moon-based ex- treme ultraviolet (EUV) camera to observe Earth's plasmasphere is introduced and the design, test and calibration results are presented. The EUV camera is composed of a multilayer film mirror, a thin film filter, a photon-counting imaging detector, a mech- anism that can adjust the direction in two dimensions, a protective cover, an electronic unit and a thermal control unit. The center wavelength of the EUV camera is 30.2 nm with a bandwidth of 4.6nm. The field of view is 14.7° with an angular resolution of 0.08°, and the sensitivity of the camera is 0.11 count s-1 Rayleigh-1. The geomet- ric calibration, the absolute photometric calibration and the relative photometric cal- ibration are carried out under different temperatures before launch to obtain a matrix that can correct geometric distortion and a matrix for relative photometric correction, which are used for in-orbit correction of the images to ensure their accuracy.展开更多
Micron/nano scale topographic modification has been a significant focus of interest in current titanium(Ti)surface design.However,the influence of micron/nano structured surface on cell or bacterium behavior on the Ti...Micron/nano scale topographic modification has been a significant focus of interest in current titanium(Ti)surface design.However,the influence of micron/nano structured surface on cell or bacterium behavior on the Ti implant has rarely been systematically evaluated.Moreover,except for popular microgrooves,little work has been carried out on the reaction of cells to the bionic structure.In this study,several micro-pillars mimicking cell morphology were prepared on Ti surfaces by lithography and contact printing(ICP)method,and they were further decorated with nanotube arrays by anodization technology.These surface modifications remarkablly increased the surface roughness of pristine Ti surface from 91.17 nm±5.57 nm to be more than 1000 nm,and reduced their water contact angles from 68.3°±0.7°to be 16.9°±2.4°.Then,the effects of these hierarchical micron/nano scale patterns on the behaviors of MG63 osteoblasts,L929 fibroblasts,SCC epithelial cells and P.gingivalis were studied,aiming to evaluate their performance in osseointegration,gingival epithelial sealing and antibacterial ability.Through an innovative scoring strategy,our findings showed that square micro-pillars with 6μm width and 2μm height combined with 85 nm diameter nanotubes was suitable for implant neck design,while square micro-pillars with 3μm width and 3.6μm height combined with 55 nm diameter nanotubes was the best for implant body design.Our study reveals the synergistic effect of the hierarchical micron/nano scale patterns on MG63 osteoblasts,L929 fibroblasts,SCC epithelial cells and P.gingivalis functions.It provides insight into the design of biomedical implant surfaces.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42388101)the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC00103)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(IGGCAS-202102).
文摘Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed dataset of the magnetic field.However,the simultaneous fitting of these parameters often leads to multiple local optimal parameter sets.To address this fitting dilemma,Rong ZJ et al.(2021)recently developed a current loop model.This technique can successively separate and invert the loop parameters.Here,we further show how this technique can be reduced and modified to fit a dipole model.Applications of this reduced technique to the International Geomagnetic Reference Field model and the Martian crustal field model highlight its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly,a capability that sets it apart from existing methods.The potential impact of this technique on geomagnetism and planetary magnetism is significant,given its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly.
基金supported by the National Key R&D Program of China(2021YFA0718600)the National Natural Science Foundation of China(42441809).
文摘Research on the interstellar medium and its interaction with the solar system constitutes a significant topic in planetary physics.As the Sun traverses the local interstellar cloud,interstellar neutrals penetrate the heliosphere,forming the interstellar wind,and scattering solar extreme ultraviolet(EUV)emission lines.The intensity of the scattered radiation provides an indicator of the characteristic parameters of the interstellar wind,crucial for characterizing the heliosphere,the interstellar medium,and the evolution of the solar system.Meanwhile,a powerful method for studying stellar evolution is investigating the EUV emissions of stars.The only ongoing mission conducting an EUV full-sky survey is the relay satellite Queqiao-2.Due to the strong absorption of the interstellar medium at EUV wavelengths,modelling is essential to any study of these influences.In this study,we reviewed classical modelling methods for the density distribution of the interstellar helium atoms in the heliosphere,and the corresponding 58.4 nm radiation intensity.We established distinct density and intensity models for different orbital positions of Earth’s revolution.We found that when the Earth enters the helium focusing cone in the downwind region,both the helium density and the 58.4 nm radiation intensity increase rapidly,with the temperature effect being particularly important.The radiation intensity in the downwind direction can be 170 times that of the upwind direction.Some negligible factors were omitted for simplicity,such as the effects of the solar line width and Doppler shift.Our research can serve as an aid to the interpretation of the EUV observations in the full-sky survey conducted by Queqiao-2.
基金supported by the National Natural Science Foundation of China(Grant No.42388101)the National Natural Science Foundation of China(42241106)CAS Youth Interdisciplinary Team(JCTD-2021-05).
文摘The Sun is the primary energy source driving the Earth's climate system.A prevailing hypothesis suggests that even minor variations in solar activity,when amplified by climate system feedback mechanisms,can induce significant climatic changes on decadal to centennial timescales.However,the limited availability of historical winter climate proxies has impeded consensus on how solar variability influences the long-term winter climate in Northeast Asia,particularly during Grand Solar Minima(GMs).In this study,we analyzed daily-resolution snowfall records in Seoul from 1625 to 1907 CE,derived from the Korean official historical chronicle Seungjeongweon Ilgi.This period encompasses both the Maunder Minimum(1645–1715 CE)and the Dalton Minimum(1790–1830 CE)of solar activity.Our findings indicate that during the GMs,the first date of annual snowfall(FDS)was delayed by approximately 10 days,and the average annual snowfall frequency(ASF)was reduced by half compared to non-GM periods.Additionally,while an 11-year solar cycle was evident in the ASF during non-GM periods,this cycle was replaced by a shortened 8-to 9-year cycle during the GMs.These variations suggest a differential regional climatic response to prolonged changes in solar activity,and provide historical insights that enhance our understanding of the potential impact of low solar activity on the winter climate in Northeast Asia.
基金supported by the grant 2023FY101100 of the Ministry of Science and Technology of China(MOST)the key project of the National Natural Science Foundation of China(NSFC,grant No.12233009)the support from the National Natural Science Foundation of China(NSFC,grant Nos.12273064,42222408,12322306,and 12373093).
文摘This paper statistically analyzes the seeing data at the Lenghu site Platform C from 2018 to 2024,during which extensive construction modified the original landscape.The study focuses on the impacts of meteorological factors and building obstructions.The results reveal a progressive degradation in seeing as the monitoring setup passively changed:the median values were 0."76(the original location),0."83 during the Terrace,and 0."99 at the new Dome(temporarily considered the permanent monitoring location).Once the instruments are fully deployed,wind speed and wind direction critically affect seeing quality,with optimal conditions occurring when the wind speed is 2–6 m s^(−1) and the wind direction is between 180°and 270°.However,in 2023 and 2024,the wind speeds decreased,and the prevailing wind direction shifted from southwest to northwest,correlating with poorer seeing.Computational Fluid Dynamics simulations reveal that the construction of the Wide Field Survey Telescope altered the local wind field,increasing turbulence around the Dome,especially when the winds blow from 225°to 255°.In contrast,Platform A,located in a higher and more open area,consistently maintained better seeing,particularly after midnight,likely due to fewer obstructions and lower nocturnal heat release.
基金supported by Natural Science Foundation of Guangdong Province(Nos.2021A1515010101,2021A1515011372,2023A1515011895)National Natural Science Foundation of China(Nos.21807017,82273759,32371529)Guangzhou Medical University Scientific Research Capacity Improvement Project(No.02-410-2405104)。
文摘α_(1)-Adrenergic receptor(AR)blockers can be effective for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms(BPH/LUTS),their usage is limited by cardiovascular-related side effects that are caused by the subtype nonselective nature or low selectivity of many current drugs.We previously reported that phenylpiperazine analogues with amide and propane linker were moderateα_(1D/1A)adrenoceptor antagonists and exhibited better anti-BPH effect than lead compound naftopidil(NAF)in vivo,however,with modestα_(1D/1A)-subtype selectivity.Herein,we replaced propane moiety with2-hydroxypropanol linker and synthesized twenty-seven racemic derivatives with modified aromatic and hetero aromatic groups.Of these new compounds,quinoline surrogate 17 exhibited extremely weak antagonistic affinity onα_(1B)in both cell-based calcium assay and tissue-based functional assay,so that elicited significantα_(1A/1B)andα_(1D/1B)selectivity.Intriguingly,the R enantiomer of 17 preferentially displayed superior anti-BPH effect in rat model compared with S-17,supporting ligand regulates the receptor in a highly stereospecific manner.Finally,the computer-aided modelling research was also performed in order to deeply understand the unique binding mode of R-17 in complex withα_(1A)and the subtype receptor selectivity for R-17 was also rationalized in this study.Taken together,our work enriched the diversity of phenylpiperazines for the treatment of BPH/LUTS,and provided a basis for discovery ofα_(1D/1A)-selective ligands.
基金supported by grants from the National Key Research and Development Program of China(2023YFF1000404,2022YFF10001501)the National Natural Science Foundation of China(32171971)。
文摘Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a valuable genetic resource for wheat disease resistance breeding programs.We developed three hexaploid pre-breeding lines with PM resistance genes derived from three WEW accessions.These resistant pre-breeding lines were crossed with susceptible common wheat accessions.Segregations in the F2populations were 3 resistant:1 susceptible,suggesting a single dominant allele in each resistant parent.Mapping of the resistance gene in each line indicated a single locus on the long arm of chromosome 7A,at the approximate location of previously cloned Pm60 from T.urartu.Sanger sequencing revealed three different Pm60 haplotypes(Hap 3,Hap 5,and Hap 6).Co-segregating diagnostic markers were developed for identification and selection of each haplotype.The resistance function of each haplotype was verified by the virus-induced gene silencing(VIGS).Common wheat lines carrying each of these Pm60 haplotypes were resistant to most Bgt isolates and differences in the response arrays suggested allelic variation in response.
基金supported by the National Natural Science Foundation of China(22101065 and 51972075)the Heilongjiang Provincial Natural Science Foundation of China(YQ2021B001)+1 种基金the Project funded by China Postdoctoral Science Foundation(2023T160153 and 2020M681075)the Fundamental Research Funds for the Central Universities.
文摘Indium selenide has garnered significant attention for high volumetric capacities,but is currently plagued by the sluggish charge transfer kinetics,severe volume effect,and rapid capacity degradation that hinder their practical applications.Herein,we design,synthesize,and characterize a multi-kernel-shell structure comprised of indium selenide encapsulated within carbon nanospheres(referred to as m-K-S In_(2)Se_(3)@C)through an integrated approach involving a hydrothermal method followed by a gaseous selenization process.Importantly,experimental measurements and density functional theory calculations confirm that the m-K-S In_(2)Se_(3)@C not only improve the adsorption capability for Li-ions but also lower the energy barrier for Li-ions diffusion.Profiting from numerous contact points,shorter diffusion distances and an improved volume buffering effect,the m-K-S In_(2)Se_(3)@C achieves an 800 mA h g^(−1)capacity over 1000 loops at 1000 mA g^(−1),a 520 mA h g^(−1)capacity at 5000 mA g^(−1)and an energy density of 270 Wh kg^(−1)when coupled with LiFePO4,surpassing most related anodes reported before.Broadly,the m-K-S structure with unique nano-micro structure offers a new approach to the design of advanced anodes for LIBs.
基金the National Natural Science Foundation of China(42222408)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2021027)the Key Research Program of the Institute of Geology and Geophysics,CAS(Grant IGGCAS-201904).
文摘Jupiter is one of the top priorities for deep space exploration in China and other countries.The structure of Jupiter’s interior,in particular,is a crucial but still unclear scientific topic.This paper discusses current scientific understanding of Jupiter’s interior by summarizing the history of past and current exploration and data analysis.We review recent space-based and ground-based observation methods and analyze their feasibility.To gain new insight into the internal structure of Jupiter,we propose to study Jupiter’s innards by planetary seismology.Ground-based observation,namely the Jupiter Seismologic Interferometer Polarization Imager(SIPI)in Lenghu,will be developed to obtain the Doppler velocity distribution on the surface of Jupiter and identify oscillation signals.Lenghu has observation conditions that are not only exceptional in China but even in the world,capable of providing novel insight into the interior of Jupiter.This will also be the first study in China of the interior of Jupiter using asteroseismology,which has significant implications for China’s plans to explore Jupiter via spacecraft-mounted instruments.
基金supported by the National Natural Science Foundation of China(U1705251,21871217,21573170,21433007)the National Key Research and Development Program of China(2018YFB1502001)~~
文摘Sunlight-driven photocatalytic water-splitting for hydrogen(H2)evolution is a desirable strategy to utilize solar energy.However,this strategy is restricted by insufficient light harvesting and high photogenerated electron-hole recombination rates of TiO2-based photocatalysts.Here,a graphene-modified WO3/TiO2 step-scheme heterojunction(S-scheme heterojunction)composite photocatalyst was fabricated by a facile one-step hydrothermal method.In the ternary composite,TiO2 and WO3 nanoparticles adhered closely to reduced graphene oxide(rGO)and formed a novel S-scheme heterojunction.Moreover,rGO in the composite not only supplied abundant adsorption and catalytically active sites as an ideal support but also promoted electron separation and transfer from the conduction band of TiO2 by forming a Schottky junction between TiO2 and rGO.The positive cooperative effect of the S-scheme heterojunction formed between WO3 and TiO2 and the Schottky heterojunction formed between TiO2 and graphene sheets suppressed the recombination of relatively useful electrons and holes.This effect also enhanced the light harvesting and promoted the reduction reaction at the active sites.Thus,the novel ternary WO3/TiO2/rGO composite demonstrated a remarkably enhanced photocatalytic H2 evolution rate of 245.8μmol g^-1 h^-1,which was approximately 3.5-fold that of pure TiO2.This work not only presents a low-cost graphene-based S-scheme heterojunction photocatalyst that was obtained via a feasible one-step hydrothermal approach to realize highly efficient H2 generation without using noble metals,but also provides new insights into the design of novel heterojunction photocatalysts.
基金funded by Fei He,National Natural Science Foundation of China(contract no.52376154)Anhui Provincial Natural Science Foundation(contract no.2308085J21).
文摘Aiming at the global design issue of transpiration cooling thermal protection system,a self-driven circulation loop is proposed as the internal coolant flow passage for the transpiration cooling structure to achieve adaptive cooling.To enhance the universality of this internal cooling pipe design and facilitate its application,numerical studies are conducted on this systemwith four commonly used cooling mediums as coolant.Firstly,the accuracy of the numerical method is verified through an established experimental platform.Then,transient numerical simulations are performed on the flow states of different cooling mediums in the new self-circulation system.Based on the numerical result,the flow,phase change,and heat transfer characteristics of different cooling mediums are analyzed.Differences in fluid velocity and latent heat of phase change result in significant variation in heat exchange capacity among different coolingmediums,with the maximumdifference reaching up to 3 times.Besides,faster circulation speed leads to greater heat transfer capacity,with a maximum of 7600 W/m^(2).Consequently,the operating mechanism and cooling laws of the natural circulation system is further investigated,providing a reference for the practical application of this system.
基金Item Sponsored by Fundamental Research Funds for Central Universities of China(FRF-BR-10-027B)
文摘Aiming at the characteristics of the practical steelmaking process, a hybrid model based on ladle heat sta- tus and artificial neural network has been proposed to predict molten steel temperature. The hybrid model could over- come the difficulty of accurate prediction using a single mathematical model, and solve the problem of lacking the consideration of the influence of ladle heat status on the steel temperature in an intelligent model. By using the hybrid model method, forward and backward prediction models for molten steel temperature in steelmaking process are es- tablished and are used in a steelmaking plant. The forward model, starting from the end-point of BOF, predicts the temperature in argon-blowing station, starting temperature in LF, end temperature in LF and tundish temperature forwards, with the production process evolving. The backward model, starting from the required tundish tempera- ture, calculates target end temperature in LF, target starting temperature in LF, target temperature in argon-blo- wiag station and target BOF end-point temperature backwards. Actual application results show that the models have better prediction accuracy and are satisfying for the process of practical production.
基金Supported by Social Development Projects of Yunnan Province,No.2008CA026
文摘AIM:To evaluate the effects of diazoxide on ischemia/reperfusion(I/R)-injured hepatocytes and further elucidate its underlying mechanisms.METHODS:Male Sprague-Dawley rats were randomized(8 for donor and recipient per group)into five groups:I/R group(4 h of liver cold ischemia followed by 6 h of reperfusion);heme oxygenase-1(HO-1)small interfering RNA(siRNA)group(injection of siRNA via donor portal vein 48 h prior to harvest);diazoxide(DZ) group(injection of DZ via donor portal vein 10 min prior to harvest);HO-1 siRNA+DZ group;and siRNA control group.Blood and liver samples were collected at 6 h after reperfusion.The mRNA expressions and protein levels of HO-1 were determined by reverse transcription polymerase chain reaction and Western blotting,and tissue morphology was examined by light and transmission electron microscopy.Serum transaminases level and cytokines concentration were also measured.RESULTS:We observed that a significant reduction of HO-1 mRNA and protein levels in HO-1 siRNA and HO-1 siRNA+DZ group when compared with I/R group,while the increases were prominent in the DZ group.Light and transmission electron microscopy indicated severe disruption of tissue with lobular distortion and mitochondrial cristae damage in the HO-1 siRNA and HO-1 siRNA+DZ groups compared with DZ group.Serum alanine aminotransferase,aspartate transaminase,tumor necrosis factor-αand interleukin-6 levels increased in the HO-1 siRNA and HO-1 siRNA+DZ groups,and decreased in the DZ group.CONCLUSION:The protective effect of DZ may be induced by upregulation of HO-1.By inhibiting expression of HO-1,this protection pretreated with DZ was abolished.
基金supported by National Natural Science Foundation of China(82302078,32170617,31970558,82170920)National Key R&D Program of China(2021YFC1005301,2022YFC2703303)+1 种基金Natural Science Foundation of Guangdong Province of China(2022A1515012621)Grant for joint research projects from Shenzhen Hospital,Southern Medical University(22H3AUN04).
文摘Hereditary gingival fibromatosis(HGF)is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity.Five distinct loci related to non-syndromic HGF have been identified;however,only two diseasecausing genes,SOS1 and REST,inducing HGF have been identified at two loci,GINGF1 and GINGF5,respectively.Here,based on a family pedigree with 26 members,including nine patients with HGF,we identified double heterozygous pathogenic mutations in the ZNF513(c.C748T,p.R250W)and KIF3C(c.G1229A,p.R410H)genes within the GINGF3 locus related to HGF.Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo.ZNF513,a transcription factor,binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts.Furthermore,a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513(p.R250W)or Kif3c(p.R412H)alone do not led to clear phenotypes with gingival fibromatosis,whereas the double mutations led to gingival hyperplasia phenotypes.In addition,we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1.Moreover,the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels.ZNF513 combined with KIF3C regulates gingival fibroblast proliferation,migration,and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways.In summary,these results demonstrate ZNF513+KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0700503)the National High Technology Research and Development Program of China (No. 2015AA034201)+2 种基金the Beijing Science and Technology Plan (No. D161100002416001)the National Natural Science Foundation of China (No. 51172018)Kennametal Inc
文摘High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.
基金The authors thank the reviewers for their valuable comments on this manuscript and gratefully acknowledge the financial support for this study provided by grants from the Collaborative Research Key Project between China and EU(granted by the Ministry of Science and Technology of China,2017YFE0111000)the China Forage and Grass Research System(CARS-34)+1 种基金the Agricultural Science and Technology Innovation Program of CAAS(ASTIP-IAS14)the National Natural Science Foundation of China(31772656).
文摘Alfalfa(Medicago sativa L.)is the most widely grown forage legume crop worldwide.Yield and plant height are important agronomic traits influenced by genetic and environmental factors.The objective of this study was to identify quantitative trait loci(QTL)and molecular markers associated with alfalfa yield and plant height.To understand the genetic basis of these traits,a full-sib F1 population composed of 392 individuals was developed by crossing a low-yielding precocious alfalfa genotype(male parent)with a high-yielding latematuring alfalfa cultivar(female parent).The linkage maps were constructed with 3818 single-nucleotide polymorphism(SNP)markers on 64 linkage groups.QTL for yield and plant height were mapped using phenotypic data for three years.Sixteen QTL associated with yield and plant height were identified on chromosomes 1 to 8.Six QTL explained more than 10%of phenotypic variation,representing major loci controlling yield and plant height.One locus on chromosome 1 controlling yield traits had not been identified in previous studies.Three QTL co-located with other QTL(qyield-1 and qheight-7,qheight-5 and qyield-4,qheight-6,and qyield-6).With further validation,the markers closely linked with these QTL may be used for marker-assisted selection in breeding new alfalfa varieties with high yield.
基金supported by the National Natural Sci-ences Foundation of China(No.50072042,20676016,21076024)
文摘Polyaluminum chloride was synthesized with a membrane reactor,in which NaOH was added into AlCl 3 solution through the membrane’s micropores to reduce the NaOH droplets size.The content of the most efficient species increased to about 80%.The process characteristics in the reaction (i.e.,flow velocity,pressure drop),and membrane fouling and cleaning were investigated.The evolution of both flow velocity and pressure drop during the reaction were related to changes in species distribution and solution viscosity.The process characteristics were well interpreted in terms of the Bernoulli equation.After reaction,the membranes were recovered by cleaning with diluted hydrochloride acid.This study is crucial for process design and scale-up of membrane reactors.
基金supported by China Agriculture Research System(CARS-30)Jilin Agricultural Science and Technology College seed fund project(2013-903)
文摘This research was designed to assess the changes in anthocyanin content in grape skins of Vitis amurensis and to explore m RNA transcriptions of 11 structural genes(PAL,CHS3, CHI1, F3H2, F30 H, F3050 H, DFR, LDOX, UFGT,OMT and GST) related to anthocyanin biosynthesis during grape berry development, by the use of HPLC-MS/MS and real-time Q-PCR analysis. Accumulation of anthocyanins began at veraison, continued throughout the later berry development and reached a peak at maturity. Veraison is the time when the berries turn from green to purple. Expression of PAL, CHI1, and LDOX were up-regulated from 2 to4 weeks after flowering(WAF), down-regulated from6 WAF to veraison, whereas DFR was up-regulated at8 WAF, and then up-regulated from veraison to maturity.CHS3, F3050 H, UFGT, GST, and OMT were down-regulated from 2 WAF to veraison, and then up-regulated from veraison to maturity. The transcriptional expressions of the11 structural genes also showed positive correlations with the anthocyanin content from veraison to maturity. Positive correlations were also observed between OMT transcriptional level and the content of methoxyl-anthocyanins, and between F3050 H transcriptional level and the content of delphinidin anthocyanins. F3H2 and F30 H expression was up-regulated at 2 WAF. F3H2 expression was down-regulated from 4 WAF to veraison and then up-regulated again from veraison to maturity. F30 H expression was down-regulated at 4 WAF and then up-regulated again from 6 WAF to maturity. F30 H transcriptional level was correlated positively with the cyanidin anthocyanin concentration from veraison to maturity. These results indicate that the onset of anthocyanin synthesis during berry development coincides with a coordinated increase in the expression of a number of genes in the anthocyanin biosynthetic pathway.
文摘The process of development and calibration for the first Moon-based ex- treme ultraviolet (EUV) camera to observe Earth's plasmasphere is introduced and the design, test and calibration results are presented. The EUV camera is composed of a multilayer film mirror, a thin film filter, a photon-counting imaging detector, a mech- anism that can adjust the direction in two dimensions, a protective cover, an electronic unit and a thermal control unit. The center wavelength of the EUV camera is 30.2 nm with a bandwidth of 4.6nm. The field of view is 14.7° with an angular resolution of 0.08°, and the sensitivity of the camera is 0.11 count s-1 Rayleigh-1. The geomet- ric calibration, the absolute photometric calibration and the relative photometric cal- ibration are carried out under different temperatures before launch to obtain a matrix that can correct geometric distortion and a matrix for relative photometric correction, which are used for in-orbit correction of the images to ensure their accuracy.
基金This work was funded by the National Natural Science Foundation of China(No.81801855)Young Elite Scientist Sponsorship Program by CSA(No.2018QNRC001)+1 种基金Fundamental Research Funds for the Central Universities,Chengguan District Science and Technology Project(No.2018-7-6)Lanzhou University Hospital of Stomatology Research Support Fund.
文摘Micron/nano scale topographic modification has been a significant focus of interest in current titanium(Ti)surface design.However,the influence of micron/nano structured surface on cell or bacterium behavior on the Ti implant has rarely been systematically evaluated.Moreover,except for popular microgrooves,little work has been carried out on the reaction of cells to the bionic structure.In this study,several micro-pillars mimicking cell morphology were prepared on Ti surfaces by lithography and contact printing(ICP)method,and they were further decorated with nanotube arrays by anodization technology.These surface modifications remarkablly increased the surface roughness of pristine Ti surface from 91.17 nm±5.57 nm to be more than 1000 nm,and reduced their water contact angles from 68.3°±0.7°to be 16.9°±2.4°.Then,the effects of these hierarchical micron/nano scale patterns on the behaviors of MG63 osteoblasts,L929 fibroblasts,SCC epithelial cells and P.gingivalis were studied,aiming to evaluate their performance in osseointegration,gingival epithelial sealing and antibacterial ability.Through an innovative scoring strategy,our findings showed that square micro-pillars with 6μm width and 2μm height combined with 85 nm diameter nanotubes was suitable for implant neck design,while square micro-pillars with 3μm width and 3.6μm height combined with 55 nm diameter nanotubes was the best for implant body design.Our study reveals the synergistic effect of the hierarchical micron/nano scale patterns on MG63 osteoblasts,L929 fibroblasts,SCC epithelial cells and P.gingivalis functions.It provides insight into the design of biomedical implant surfaces.