Ammonia borane(AB)is a promising hydrogen storage medium widely used for hydrogen generation,but its slow hydrolysis kinetics limits its applications.Medium/high-entropy materials(M/HEMs)have emerged as efficient cata...Ammonia borane(AB)is a promising hydrogen storage medium widely used for hydrogen generation,but its slow hydrolysis kinetics limits its applications.Medium/high-entropy materials(M/HEMs)have emerged as efficient catalysts due to their complementary elemental and structural properties.We developed a deposition in-situ reduction(D-ISR)approach for the rapid synthesis of single-phase medium/high-entropy oxides(M/HEOs)at room temperature,along with establishing general criteria for M/HEOs synthesis based on component properties.Deposition facilitates the incorporation of active elements(Ti/Zr/V/Cr/Nb),which significantly enhance the enthalpy-driven force of the dynamic oxidation(DO)process via an“active element coordination”strategy,thereby overcoming low-temperature solid solubility limitations.Nine-component HEOs and large-scale experiments confirm the universality and mass-production potential of the D-ISR approach.CoCuNiTi-O/AC synthesized via this strategy exhibits pronounced crystal distortion and disorder(Co–O coordination number=10.2),enhancing the Co–O coordination environment and mitigating Ostwald ripening.This leads to high activity and significantly enhanced structural stability,achieving a turnover frequency of 236.6 min^(-1)for ammonia borane hydrolysis,15 times higher than Co-O/AC and surpassing the most non-noble catalysts.These observations highlight an efficient M/HEOs synthesis methodology that advances M/HEMs applications in nanoenergy.展开更多
The high hydrogen desorption density(19.6 wt%)of ammonia borane(AB)makes it one of the most promising chemical hydrogen storage materials.Developing cost-effective catalysts is the key for accelerating the hydrolysis ...The high hydrogen desorption density(19.6 wt%)of ammonia borane(AB)makes it one of the most promising chemical hydrogen storage materials.Developing cost-effective catalysts is the key for accelerating the hydrolysis of AB.Herein,we present a straightforward synthesis method for the Cu_(2)O decorated CoO catalyst derived from ZIF-67 precursors using carbothermal shock(~1 s)in air.The obtained results demonstrate that a small amount of Cu_(2)O doping into CoO synergistically enhances AB hydrolysis,resulting in an almost fivefold increase in turnover frequency(TOF=97 molH_(2)molCoO-1min-1at 298 K).Further studies indicated that the incorporation of Cu_(2)O alters the electronic distribution of the surface of catalysts,introducing more oxygen vacancies and increasing the pyridinic nitrogen content.The increased oxygen vacancies effectively enhanced the adsorption and activation ability of active sites for reactants(H_(2)O and AB),while the targeting effect of pyridinic nitrogen enhances the dispersion of the catalyst.Theoretical analysis reveals that CoO plays a key role in the dissociation of H_(2)O,while minor doping with Cu_(2)O substantially reduces the dissociation energy barrier of AB.This research provides a novel strategy for the design and efficient preparation of AB hydrolysis catalysts for efficient hydrogen production.展开更多
In this paper,we computed the fractal dimension of three survey areas within the central and southern sections of the Tan-Lu fault zone using fractal analysis.Subsequently,simulations were conducted to analyze the gra...In this paper,we computed the fractal dimension of three survey areas within the central and southern sections of the Tan-Lu fault zone using fractal analysis.Subsequently,simulations were conducted to analyze the gravity response under a forward model of equivalent density changes.Additionally,we thoroughly investigated the seismic monitoring capabilities of the gravity network in the central and southern regions of the Tan-Lu fault.Expanding on these analyses.Recent gravity field variations were examined in the mid-southern segment of the Tan-Lu fault zone and its surrounding areas from 2013 to2023.The results indicate that the observation capabilities of the northern network in the study area outperform those of the southern gravity network,with the northern network demonstrating a more evenly distributed coverage.The optimal gravity anomaly recovery effect for the entire study area is achieved at a resolution of 0.5°×0.5°.With an equivalent observable signal in the range of 30×10^(-8)m/s^(2) to 40×10^(-8)m/s^(2),the spatial resolution of the gravity network's field source is estimated to be approximately 55 km.From 2013 to 2023,a significant positive change has been observed in the gravity field within the study area.The Tan-Lu fault zone plays a crucial role in governing the crustal movement in this region,with the dextral strike-slip movement trend of the fault persisting.Small earthquakes occur more frequently in the southern section of the fault zone,while strong earthquakes are less common.The alignment of gravity field changes with the fault strike indicates ongoing activity in the fault zone without any signs of locking.In the central segment of the Tan-Lu fault zone in the Shandong region,there appears to be a weaker correlation between gravity field changes and fault trends.This discrepancy may suggest that the area is locked,resulting in the accumulation of stress and strain.It is imperative to monitor the continuous evolution of the gravity field in this region to gain insights into potential seismic risks.展开更多
The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves cru...The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves crucial for commercially viable fusion technologies.ZrCo alloy is considered as a promising candidate for fast isotope handling.However,cycling degradation caused by hydrogen-induced disproportionation results in severe tritium trapping,thus impeding its practical application.Herein,an isostructural transition is successfully constructed with low hysterisis,ameliorated plateau flatness of pressure-composition isotherms and improved high-temperature durability for hydrogen trapping minimization.Specifically,the optimal Zr_(0.7)Hf_(0.15)Nb_(0.15)Co_(0.6)Cu_(0.15)Ni_(0.25) alloy adopts Hf-Nb and Cu-Ni as Zr and Co side doping elements,exhibiting substantial thermodynamic destabilization with nearly 90℃ reduction of delivery temperature,and significant kinetic promotion with a threefold lower energy barrier.More importantly,both hydrogen utilization and cycling retention of optimal alloy are increased by about twenty times compared with pristine alloy after 100 cycles at 500℃.Minimized disproportionation driving force from both isostructural transition and suppressed 8e hydrogen occupation realizes full potential of optimal alloy.This work demonstrates the effectiveness of combining isostructural transformation and high-temperature durability improvement to enhance the hydrogen utilization of ZrCo-based alloys and other hydrogen storage materials.展开更多
Although industrial processes often perform perfectly under design conditions, they may deviate from the optimal operating point owing to parameters drift, environmental disturbances, etc. Thus, it is necessary to dev...Although industrial processes often perform perfectly under design conditions, they may deviate from the optimal operating point owing to parameters drift, environmental disturbances, etc. Thus, it is necessary to develop efficacious strategies or procedure to assess the process performance online. In this paper, we explore the issue of operating optimality assessment for complex industrial processes based on performance-similarity considering nonlinearities and outliers simultaneously, and a general enforced online performance assessment framework is proposed. In the offline part, a new and modified total robust kernel projection to latent structures algorithm,T-KPRM, is proposed and used to evaluate the complex nonlinear industrial process, which can effectively extract the optimal-index-related process variation information from process data and establish assessment models for each performance grades overcoming the effects of outlier. In the online part, the online assessment results can be obtained by calculating the similarity between the online data from a sliding window and each of the performance grades. Furthermore, in order to improve the accuracy of online assessment, we propose an online assessment strategy taking account of the effects of noise and process uncertainties. The Euclidean distance between the sliding data window and the optimal evaluation level is employed to measure the contribution rates of variables, which indicate the possible reason for the non-optimal operating performance. The proposed framework is tested on a real industrial case: dense medium coal preparation process, and the results shows the efficiency of the proposed method comparing to the existing method.展开更多
This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature ...This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature as well as reduce the influence of resistance-temperature dependency.Considering the degraded circuit performance caused by the process deviation,the trimmable module of the temperature coefficient(TC)is introduced to improve the circuit stability.The circuit has the advantages of simple structure,high linear stability,high TC accuracy,and trimmable TC.It consumes an area of 0.09 mm^(2)when fabricated by using the 0.25-μm complementary metal-oxide-semiconductor(CMOS)process.The proposed circuit achieves the simulated power supply rejection(PSR)of about-78.7 dB@1 kHz,the measured TC of~4.7 ppm/℃over a wide temperature range from-55℃to 125℃with the 2.5-V single-supply voltage,and the tested line regulation of 0.10 mV/V.Such a high-performance bandgap reference circuit can be widely applied in high-precision and high-reliability electronic systems.展开更多
Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body.Tumor cells take up a large amount of glutamine to meet their rap...Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body.Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements,which is supported by the upregulation of glutamine transporters.Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors.Among all cancers,digestive system malignant tumors(DSMTs)have the highest incidence and mortality rates,and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy.Due to the relatively low survival rate and severe side effects associated with DSMTs treatment,new treatment strategies are urgently required.This article summarizes the glutamine transporters involved in DSMTs and describes their role in DSMTs.Additionally,glutamine transportertarget drugs are discussed,providing theoretical guidance for the further development of drugs DSMTs treatment.展开更多
Swarming behavior facilitates pair formation,and therefore mating,in many eusocial termites.However,the physiological adjustments and morphological transformations of the flight muscles involved in flying and flightle...Swarming behavior facilitates pair formation,and therefore mating,in many eusocial termites.However,the physiological adjustments and morphological transformations of the flight muscles involved in flying and flightless insect forms are still unclear.Here,we found that the dispersal flight of the eusocial termite Reticulitermes chinensis Snyder led to a gradual decrease in adenosine triphosphate supply from oxidative phospho・rylation,as well as a reduction in the activities of critical mitochondrial respiratory enzymes from preflight to dealation.Correspondingly,using three-dimensional reconstruction and transmission electron microscopy(TEM),the flight muscles were found to be gradually deteriorated during this process.In particular,two tergo-pleural muscles(IItpm5 and IIItpm5)necessary to adjust the rotation of wings for wing shedding behavior were present only in flying alates.These findings suggest that flight muscle systems vary in function and morphology to facilitate the swarming flight procedure,which sheds light on the important role of swarming in successful extension and fecundity of eusocial termites.展开更多
Broad learning system(BLS)is an emerging neural network characterized by its rapid processing and robust generalization capabilities.However,determining the appropriate structure for broad learning system is also a ch...Broad learning system(BLS)is an emerging neural network characterized by its rapid processing and robust generalization capabilities.However,determining the appropriate structure for broad learning system is also a challenge.In addition,broad learning system may perform overfitting due to the dependence between nodes in processing fully connected network.To deal with these problems,an efficient ensemble broad learning system based on Dropout and Dropconnect is proposed in this paper.The proposed Dropout ensemble broad learning system randomly discards hidden nodes to improve diversity between individuals and reduce the synergy between nodes to improve prediction stability.The Dropconnect ensemble broad learning system randomly drops connection weights to generate more complementary models by adding input attribute disturbance.The experimental results on the UCI datasets confirm that the method proposed in this paper can solve the problem of model overfitting caused by the strong dependence between the nodes of ensemble broad learning system.The proposed algorithm outperforms the original BLS in terms of prediction stability and classification accuracy.展开更多
基金the financial support from the National Natural Science Foundation of China(52171223)the Guangxi Science and Technology Major Project(No.AA24206007)。
文摘Ammonia borane(AB)is a promising hydrogen storage medium widely used for hydrogen generation,but its slow hydrolysis kinetics limits its applications.Medium/high-entropy materials(M/HEMs)have emerged as efficient catalysts due to their complementary elemental and structural properties.We developed a deposition in-situ reduction(D-ISR)approach for the rapid synthesis of single-phase medium/high-entropy oxides(M/HEOs)at room temperature,along with establishing general criteria for M/HEOs synthesis based on component properties.Deposition facilitates the incorporation of active elements(Ti/Zr/V/Cr/Nb),which significantly enhance the enthalpy-driven force of the dynamic oxidation(DO)process via an“active element coordination”strategy,thereby overcoming low-temperature solid solubility limitations.Nine-component HEOs and large-scale experiments confirm the universality and mass-production potential of the D-ISR approach.CoCuNiTi-O/AC synthesized via this strategy exhibits pronounced crystal distortion and disorder(Co–O coordination number=10.2),enhancing the Co–O coordination environment and mitigating Ostwald ripening.This leads to high activity and significantly enhanced structural stability,achieving a turnover frequency of 236.6 min^(-1)for ammonia borane hydrolysis,15 times higher than Co-O/AC and surpassing the most non-noble catalysts.These observations highlight an efficient M/HEOs synthesis methodology that advances M/HEMs applications in nanoenergy.
基金financially supported by the National Natural Science Foundation of China(No.52301276)Zhejiang Provincial Natural Science Foundation of China(No.24E010001)+2 种基金Lishui Science and Technology Plan Project(No.2023GYX09)the support of the National Natural Science Foundation of China(52371229)Shanghai High-level Talent start funding
文摘The high hydrogen desorption density(19.6 wt%)of ammonia borane(AB)makes it one of the most promising chemical hydrogen storage materials.Developing cost-effective catalysts is the key for accelerating the hydrolysis of AB.Herein,we present a straightforward synthesis method for the Cu_(2)O decorated CoO catalyst derived from ZIF-67 precursors using carbothermal shock(~1 s)in air.The obtained results demonstrate that a small amount of Cu_(2)O doping into CoO synergistically enhances AB hydrolysis,resulting in an almost fivefold increase in turnover frequency(TOF=97 molH_(2)molCoO-1min-1at 298 K).Further studies indicated that the incorporation of Cu_(2)O alters the electronic distribution of the surface of catalysts,introducing more oxygen vacancies and increasing the pyridinic nitrogen content.The increased oxygen vacancies effectively enhanced the adsorption and activation ability of active sites for reactants(H_(2)O and AB),while the targeting effect of pyridinic nitrogen enhances the dispersion of the catalyst.Theoretical analysis reveals that CoO plays a key role in the dissociation of H_(2)O,while minor doping with Cu_(2)O substantially reduces the dissociation energy barrier of AB.This research provides a novel strategy for the design and efficient preparation of AB hydrolysis catalysts for efficient hydrogen production.
基金supported by the Three-pronged Project on Earthquake Monitoring,Forecasting and Scientific Research of the China Earthquake Administration(No.3JH-202402026)The Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(WHYWZ202209)+1 种基金The Joint Open Fund of Mengcheng National Geophysical Observatory(No.MENGO-202210 and MENGO-202211)The Science for Earthquake Resilience,China Earthquake Administration(No.XH22002YA)。
文摘In this paper,we computed the fractal dimension of three survey areas within the central and southern sections of the Tan-Lu fault zone using fractal analysis.Subsequently,simulations were conducted to analyze the gravity response under a forward model of equivalent density changes.Additionally,we thoroughly investigated the seismic monitoring capabilities of the gravity network in the central and southern regions of the Tan-Lu fault.Expanding on these analyses.Recent gravity field variations were examined in the mid-southern segment of the Tan-Lu fault zone and its surrounding areas from 2013 to2023.The results indicate that the observation capabilities of the northern network in the study area outperform those of the southern gravity network,with the northern network demonstrating a more evenly distributed coverage.The optimal gravity anomaly recovery effect for the entire study area is achieved at a resolution of 0.5°×0.5°.With an equivalent observable signal in the range of 30×10^(-8)m/s^(2) to 40×10^(-8)m/s^(2),the spatial resolution of the gravity network's field source is estimated to be approximately 55 km.From 2013 to 2023,a significant positive change has been observed in the gravity field within the study area.The Tan-Lu fault zone plays a crucial role in governing the crustal movement in this region,with the dextral strike-slip movement trend of the fault persisting.Small earthquakes occur more frequently in the southern section of the fault zone,while strong earthquakes are less common.The alignment of gravity field changes with the fault strike indicates ongoing activity in the fault zone without any signs of locking.In the central segment of the Tan-Lu fault zone in the Shandong region,there appears to be a weaker correlation between gravity field changes and fault trends.This discrepancy may suggest that the area is locked,resulting in the accumulation of stress and strain.It is imperative to monitor the continuous evolution of the gravity field in this region to gain insights into potential seismic risks.
基金supports from the National Key Research and Development Program of China(2022YFE03170002)the National Natural Science Foundation of China(52071286 and U2030208).
文摘The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves crucial for commercially viable fusion technologies.ZrCo alloy is considered as a promising candidate for fast isotope handling.However,cycling degradation caused by hydrogen-induced disproportionation results in severe tritium trapping,thus impeding its practical application.Herein,an isostructural transition is successfully constructed with low hysterisis,ameliorated plateau flatness of pressure-composition isotherms and improved high-temperature durability for hydrogen trapping minimization.Specifically,the optimal Zr_(0.7)Hf_(0.15)Nb_(0.15)Co_(0.6)Cu_(0.15)Ni_(0.25) alloy adopts Hf-Nb and Cu-Ni as Zr and Co side doping elements,exhibiting substantial thermodynamic destabilization with nearly 90℃ reduction of delivery temperature,and significant kinetic promotion with a threefold lower energy barrier.More importantly,both hydrogen utilization and cycling retention of optimal alloy are increased by about twenty times compared with pristine alloy after 100 cycles at 500℃.Minimized disproportionation driving force from both isostructural transition and suppressed 8e hydrogen occupation realizes full potential of optimal alloy.This work demonstrates the effectiveness of combining isostructural transformation and high-temperature durability improvement to enhance the hydrogen utilization of ZrCo-based alloys and other hydrogen storage materials.
基金Supported by the National Natural Science Foundation of China(61503384,61603393)Natural Science Foundation of Jiangsu(BK20150199,BK20160275)+1 种基金the Foundation Research Funds for the Central Universities(2015QNA65)the Postdoctoral Foundation of Jiangsu Province(1501081B)
文摘Although industrial processes often perform perfectly under design conditions, they may deviate from the optimal operating point owing to parameters drift, environmental disturbances, etc. Thus, it is necessary to develop efficacious strategies or procedure to assess the process performance online. In this paper, we explore the issue of operating optimality assessment for complex industrial processes based on performance-similarity considering nonlinearities and outliers simultaneously, and a general enforced online performance assessment framework is proposed. In the offline part, a new and modified total robust kernel projection to latent structures algorithm,T-KPRM, is proposed and used to evaluate the complex nonlinear industrial process, which can effectively extract the optimal-index-related process variation information from process data and establish assessment models for each performance grades overcoming the effects of outlier. In the online part, the online assessment results can be obtained by calculating the similarity between the online data from a sliding window and each of the performance grades. Furthermore, in order to improve the accuracy of online assessment, we propose an online assessment strategy taking account of the effects of noise and process uncertainties. The Euclidean distance between the sliding data window and the optimal evaluation level is employed to measure the contribution rates of variables, which indicate the possible reason for the non-optimal operating performance. The proposed framework is tested on a real industrial case: dense medium coal preparation process, and the results shows the efficiency of the proposed method comparing to the existing method.
文摘This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature as well as reduce the influence of resistance-temperature dependency.Considering the degraded circuit performance caused by the process deviation,the trimmable module of the temperature coefficient(TC)is introduced to improve the circuit stability.The circuit has the advantages of simple structure,high linear stability,high TC accuracy,and trimmable TC.It consumes an area of 0.09 mm^(2)when fabricated by using the 0.25-μm complementary metal-oxide-semiconductor(CMOS)process.The proposed circuit achieves the simulated power supply rejection(PSR)of about-78.7 dB@1 kHz,the measured TC of~4.7 ppm/℃over a wide temperature range from-55℃to 125℃with the 2.5-V single-supply voltage,and the tested line regulation of 0.10 mV/V.Such a high-performance bandgap reference circuit can be widely applied in high-precision and high-reliability electronic systems.
基金the National Natural Science Foundation of China(No.82003846)the Administration of Traditional Chinese Medicine of Guangdong Province,China(No.20212124).
文摘Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body.Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements,which is supported by the upregulation of glutamine transporters.Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors.Among all cancers,digestive system malignant tumors(DSMTs)have the highest incidence and mortality rates,and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy.Due to the relatively low survival rate and severe side effects associated with DSMTs treatment,new treatment strategies are urgently required.This article summarizes the glutamine transporters involved in DSMTs and describes their role in DSMTs.Additionally,glutamine transportertarget drugs are discussed,providing theoretical guidance for the further development of drugs DSMTs treatment.
基金by the National Natural Science Foundation of China(31772516 and 31501634)was funded by the Key Foreign Cooperation Projects of the Bureau of International Cooperation of Chinese Academy of Sciences(152111KYSB20160067).
文摘Swarming behavior facilitates pair formation,and therefore mating,in many eusocial termites.However,the physiological adjustments and morphological transformations of the flight muscles involved in flying and flightless insect forms are still unclear.Here,we found that the dispersal flight of the eusocial termite Reticulitermes chinensis Snyder led to a gradual decrease in adenosine triphosphate supply from oxidative phospho・rylation,as well as a reduction in the activities of critical mitochondrial respiratory enzymes from preflight to dealation.Correspondingly,using three-dimensional reconstruction and transmission electron microscopy(TEM),the flight muscles were found to be gradually deteriorated during this process.In particular,two tergo-pleural muscles(IItpm5 and IIItpm5)necessary to adjust the rotation of wings for wing shedding behavior were present only in flying alates.These findings suggest that flight muscle systems vary in function and morphology to facilitate the swarming flight procedure,which sheds light on the important role of swarming in successful extension and fecundity of eusocial termites.
基金supported by the National Natural Science Foundation of China(Nos.61973304,61873049,and 62073060)the Open Foundation of State Key Laboratory of Intelligent Optimized Manufacturing in Mining&Metallurgy Process(No.BGRIMM-KZSKL-2023-5)+1 种基金the Selection and Training Project of High Level Talents in the Sixteenth/Six Talent Peak of Jiangsu Province(No.DZXX-045)the“Double First-Class”Construction to Enhance Independent Innovation Capability Project(No.2022ZZCX01K01).
文摘Broad learning system(BLS)is an emerging neural network characterized by its rapid processing and robust generalization capabilities.However,determining the appropriate structure for broad learning system is also a challenge.In addition,broad learning system may perform overfitting due to the dependence between nodes in processing fully connected network.To deal with these problems,an efficient ensemble broad learning system based on Dropout and Dropconnect is proposed in this paper.The proposed Dropout ensemble broad learning system randomly discards hidden nodes to improve diversity between individuals and reduce the synergy between nodes to improve prediction stability.The Dropconnect ensemble broad learning system randomly drops connection weights to generate more complementary models by adding input attribute disturbance.The experimental results on the UCI datasets confirm that the method proposed in this paper can solve the problem of model overfitting caused by the strong dependence between the nodes of ensemble broad learning system.The proposed algorithm outperforms the original BLS in terms of prediction stability and classification accuracy.