期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A hybrid approach for evaluating CPT-based seismic soil liquefaction potential using Bayesian belief networks 被引量:6
1
作者 MAHMOOD ahmad TANG Xiao-wei +2 位作者 QIU Jiang-nan GU Wen-jing feezan ahmad 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期500-516,共17页
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ... Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon. 展开更多
关键词 Bayesian belief network cone penetration test seismic soil liquefaction interpretive structural modeling structural learning
在线阅读 下载PDF
Improved Prediction of Slope Stability under Static and Dynamic Conditions Using Tree-BasedModels 被引量:3
2
作者 feezan ahmad Xiaowei Tang +2 位作者 Jilei Hu Mahmood ahmad Behrouz Gordan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期455-487,共33页
Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation a... Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering.The data set of this study includes five parameters,namely slope height,slope angle,cohesion,internal friction angle,and peak ground acceleration.The available data is split into two categories:training(75%)and test(25%)sets.The output of the RT and REP tree models is evaluated using performance measures including accuracy(Acc),Matthews correlation coefficient(Mcc),precision(Prec),recall(Rec),and F-score.The applications of the aforementionedmethods for predicting slope stability are compared to one another and recently established soft computing models in the literature.The analysis of the Acc together with Mcc,and F-score for the slope stability in the test set demonstrates that the RT achieved a better prediction performance with(Acc=97.1429%,Mcc=0.935,F-score for stable class=0.979 and for unstable case F-score=0.935)succeeded by the REP tree model with(Acc=95.4286%,Mcc=0.896,F-score stable class=0.967 and for unstable class F-score=0.923)for the slope stability dataset The analysis of performance measures for the slope stability dataset reveals that the RT model attains comparatively better and reliable results and thus should be encouraged in further research. 展开更多
关键词 Slope stability seismic excitation static condition random tree reduced error pruning tree
在线阅读 下载PDF
A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability:Exploration from historical data
3
作者 Mahmood ahmad Xiao-Wei TANG +2 位作者 Jiang-Nan QIU feezan ahmad Wen-Jing GU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第6期1476-1491,共16页
The unprecedented liquefaction-related land damage during earthquakes has highlighted the need to develop a model that better interprets the liquefaction land damage vulnerability(LLDV)when determining whether liquefa... The unprecedented liquefaction-related land damage during earthquakes has highlighted the need to develop a model that better interprets the liquefaction land damage vulnerability(LLDV)when determining whether liquefaction is likely to cause damage at the ground's surface.This paper presents the development of a novel comprehensive framework based on select case history records of cone penetration tests using a Bayesian belief network(BBN)methodology to assess seismic soil liquefaction and liquefaction land damage potentials in one model.The BBN-based LLDV model is developed by integrating multi-related factors of seismic soil liquefaction and its induced hazards using a machine learming(ML)algorithm-K2 and domain knowledge(DK)data fusion methodology.Compared with the C4.5 decision tree-J48 model,naive Bayesian(NB)classifier,and BBN-K2 ML prediction methods in terms of overall accuracy and the Cohen's kappa coefficient,the proposed BBN K2 and DK model has a better performance and provides a substitutive novel LLDV framework for characterizing the vulnerability of land to liquefaction-induced damage.The proposed model not only predicts quantitatively the seismic soil liquefaction potential and its ground damage potential probability but can also identify the main reasons and fault-finding state combinations,and the results are likely to assist in decisions on seismic risk mitigation measures for sustainable development.The proposed model is simple to perform in practice and provides a step toward a more sophisticated liquefaction risk assessment modeling.This study also interprets the BBN model sensitivity analysis and most probable explanation of seismic soil liquefed sites based on an engineering point of view. 展开更多
关键词 Bayesian belief network liquefaction-induced damage potential cone penetration test soil liquefaction structural leaming and domain knowledge
原文传递
Evaluation of liquefaction-induced lateral displacement using Bayesian belief networks
4
作者 Mahmood ahmad Xiao-Wei TANG +1 位作者 Jiang-Nan QIU feezan ahmad 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第1期80-98,共19页
Liquefaction-induced lateral displacement is responsible for considerable damage to engineered structures during major earthquakes.Therefore,an accurate estimation of lateral displacement in liquefaction-prone regions... Liquefaction-induced lateral displacement is responsible for considerable damage to engineered structures during major earthquakes.Therefore,an accurate estimation of lateral displacement in liquefaction-prone regions is an essential task for geotechnical experts for sustainable development.This paper presents a novel probabilistic framework for evaluating liquefaction-induced lateral displacement using the Bayesian belief network(BBN)approach based on an interpretive structural modeling technique.The BBN models are trained and tested using a wide-range casehistory records database.The two BBN models are proposed to predict lateral displacements for free-face and sloping ground conditions.The predictive performance results of the proposed BBN models are compared with those of frequently used multiple linear regression and genetic programming models.The results reveal that the BBN models are able to learn complex relationships between lateral displacement and its influencing factors as cause-effect relationships,with reasonable precision.This study also presents a sensitivity analysis to evaluate the impacts of input factors on the lateral displacement. 展开更多
关键词 Bayesian belief network seismically induced soil liquefaction interpretive structural modeling lateral displacement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部