期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential 被引量:1
1
作者 Mahmood ahmaD Xiao-Wei TANG +2 位作者 Jiang-Nan QIU feezan ahma Wen-Jing GU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第2期490-505,共16页
This study investigates the performance of four machine learning(ML)algorithms to evaluate the earthquake-induced liquefaction potential of soil based on the cone penetration test field case history records using the ... This study investigates the performance of four machine learning(ML)algorithms to evaluate the earthquake-induced liquefaction potential of soil based on the cone penetration test field case history records using the Bayesian belief network(BBN)learning software Netica.The BBN structures that were developed by ML algorithms-K2,hill climbing(HC),tree augmented naive(TAN)Bayes,and Tabu search were adopted to perform parameter learning in Netica,thereby fixing the BBN models.The performance measure indexes,namely,overall accuracy(OA),precision,recall,F-measure,and area under the receiver operating characteristic curve,were used to evaluate the training and testing BBN models’performance and highlight the capability of the K2 and TAN Bayes models over the Tabu search and HC models.The sensitivity analysis results showed that the cone tip resistance and vertical effective stress are the most sensitive factors,whereas the mean grain size is the least sensitive factor in the prediction of seismic soil liquefaction potential.The results of this study can provide theoretical support for researchers in selecting appropriate ML algorithms and improving the predictive performance of seismic soil liquefaction potential models. 展开更多
关键词 seismic soil liquefaction Bayesian belief network cone penetration test parameter learning structural learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部