This study was planned to examine the effects of exogenous silicon supply on growth parameters and arsenic accumulation level in rice. The experiment was conducted in the wire house of Saline Agriculture Research Cent...This study was planned to examine the effects of exogenous silicon supply on growth parameters and arsenic accumulation level in rice. The experiment was conducted in the wire house of Saline Agriculture Research Centre, Institute of Soil and Environmental Science, University of Agriculture Faisalabad. The study was comprised of treatments viz: control;(100 μM Arsenic);(200 μM Arsenic);(5 mM Silicon);(5 mM Silicon + 100 μM Arsenic) and (5 mM Silicon + 200 μM Arsenic). Results revealed that maximum shoot fresh weight, shoot dry weight, root fresh weight and root dry weight were observed in (5 mM Si) solution. In the same way, maximum number of tillers was also recorded in (5 mM Si) solution;while silicon application failed to alleviate arsenic concentration of rice genotype.展开更多
The continuous supply of phosphorus(P)is indispensable in crop production.However,P resources are non-renewable,and environmental concerns like eutrophication associated with its loss from agroecosystems make the sust...The continuous supply of phosphorus(P)is indispensable in crop production.However,P resources are non-renewable,and environmental concerns like eutrophication associated with its loss from agroecosystems make the sustainable management of P resources essential for ensuring global food security.This study was designed to reduce mineral P inputs through management practices.A field experiment comprising a wheat-maize rotation system was conducted in the Guanzhong Plain of Shaanxi Province,China from 2018-2023.The eight treatments included CK(without P),FP(conventional P application);RP(recommended P);RP80(20% reduction in RP);SRP80(20% reduction in RP with straw wrapping);ARP80(20% reduction in RP with ammonium sulfate instead of urea);SARP80(20% reduction in RP with straw wrapping and ammonium sulfate instead of urea);and SARP60(40% reduction in RP with straw wrapping and ammonium sulfate instead of urea).Crop yield,P uptake,and P fertilizer use efficiency were measured during harvest and throughout the entire period of the study.At the end of the experiment,P fractions were estimated using the Tiessen-Moir P classification method.The results revealed that the grain yields of all the treatments except for RP80 were significantly increased compared to CK,with increases of 14.9-28.8%.Furthermore,agronomic efficiency,apparent P use efficiency,P recovery rate,and partial factor productivity were significantly improved for the treatments that received 20% less P with straw wrapping.Moreover,the enhancement measures significantly increased labile and moderately labile P in the soil.Therefore,straw wrapping with ammonium sulfate instead of urea is one of the most effective ways to reduce mineral P inputs while increasing the efficiency of P in wheat-maize rotation systems.展开更多
文摘This study was planned to examine the effects of exogenous silicon supply on growth parameters and arsenic accumulation level in rice. The experiment was conducted in the wire house of Saline Agriculture Research Centre, Institute of Soil and Environmental Science, University of Agriculture Faisalabad. The study was comprised of treatments viz: control;(100 μM Arsenic);(200 μM Arsenic);(5 mM Silicon);(5 mM Silicon + 100 μM Arsenic) and (5 mM Silicon + 200 μM Arsenic). Results revealed that maximum shoot fresh weight, shoot dry weight, root fresh weight and root dry weight were observed in (5 mM Si) solution. In the same way, maximum number of tillers was also recorded in (5 mM Si) solution;while silicon application failed to alleviate arsenic concentration of rice genotype.
基金supported by the National Key Research and Development Program of China(2023YFD1900300 and 2017YFD0200205)the Agricultural Key-scientific and Core-technological Project of Shaanxi Province,China(2024NYGG011)。
文摘The continuous supply of phosphorus(P)is indispensable in crop production.However,P resources are non-renewable,and environmental concerns like eutrophication associated with its loss from agroecosystems make the sustainable management of P resources essential for ensuring global food security.This study was designed to reduce mineral P inputs through management practices.A field experiment comprising a wheat-maize rotation system was conducted in the Guanzhong Plain of Shaanxi Province,China from 2018-2023.The eight treatments included CK(without P),FP(conventional P application);RP(recommended P);RP80(20% reduction in RP);SRP80(20% reduction in RP with straw wrapping);ARP80(20% reduction in RP with ammonium sulfate instead of urea);SARP80(20% reduction in RP with straw wrapping and ammonium sulfate instead of urea);and SARP60(40% reduction in RP with straw wrapping and ammonium sulfate instead of urea).Crop yield,P uptake,and P fertilizer use efficiency were measured during harvest and throughout the entire period of the study.At the end of the experiment,P fractions were estimated using the Tiessen-Moir P classification method.The results revealed that the grain yields of all the treatments except for RP80 were significantly increased compared to CK,with increases of 14.9-28.8%.Furthermore,agronomic efficiency,apparent P use efficiency,P recovery rate,and partial factor productivity were significantly improved for the treatments that received 20% less P with straw wrapping.Moreover,the enhancement measures significantly increased labile and moderately labile P in the soil.Therefore,straw wrapping with ammonium sulfate instead of urea is one of the most effective ways to reduce mineral P inputs while increasing the efficiency of P in wheat-maize rotation systems.