Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication w...Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication where secrecy needs to be guaranteed in real time.Practically,AI techniques can be utilized to design image steganographic techniques in IIoT.In addition,encryption techniques act as an important role to save the actual information generated from the IIoT devices to avoid unauthorized access.In order to accomplish secure data transmission in IIoT environment,this study presents novel encryption with image steganography based data hiding technique(EISDHT)for IIoT environment.The proposed EIS-DHT technique involves a new quantum black widow optimization(QBWO)to competently choose the pixel values for hiding secrete data in the cover image.In addition,the multi-level discrete wavelet transform(DWT)based transformation process takes place.Besides,the secret image is divided into three R,G,and B bands which are then individually encrypted using Blowfish,Twofish,and Lorenz Hyperchaotic System.At last,the stego image gets generated by placing the encrypted images into the optimum pixel locations of the cover image.In order to validate the enhanced data hiding performance of the EIS-DHT technique,a set of simulation analyses take place and the results are inspected interms of different measures.The experimental outcomes stated the supremacy of the EIS-DHT technique over the other existing techniques and ensure maximum security.展开更多
The recent adoption of satellite technologies,unmanned aerial vehicles(UAVs)and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality.But,security concerns w...The recent adoption of satellite technologies,unmanned aerial vehicles(UAVs)and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality.But,security concerns with drones were increasing as drone nodes have been striking targets for cyberattacks because of immensely weak inbuilt and growing poor security volumes.This study presents an Archimedes Optimization with Deep Learning based Aerial Image Classification and Intrusion Detection(AODL-AICID)technique in secure UAV networks.The presented AODLAICID technique concentrates on two major processes:image classification and intrusion detection.For aerial image classification,the AODL-AICID technique encompasses MobileNetv2 feature extraction,Archimedes Optimization Algorithm(AOA)based hyperparameter optimizer,and backpropagation neural network(BPNN)based classifier.In addition,the AODLAICID technique employs a stacked bi-directional long short-term memory(SBLSTM)model to accomplish intrusion detection for cybersecurity in UAV networks.At the final stage,the Nadam optimizer is utilized for parameter tuning of the SBLSTM approach.The experimental validation of the AODLAICID technique is tested and the obtained values reported the improved performance of the AODL-AICID technique over other models.展开更多
Purpose-Virtually unlimited amounts of data collection by cybersecurity systems put people at risk of having their privacy violated.Social networks like Facebook on the Internet provide an overplus of knowledge concer...Purpose-Virtually unlimited amounts of data collection by cybersecurity systems put people at risk of having their privacy violated.Social networks like Facebook on the Internet provide an overplus of knowledge concerning their users.Although users relish exchanging data online,only some data are meant to be interpreted by those who see value in it.It is now essential for online social network(OSN)to regulate the privacy of their users on the Internet.This paper aims to propose an efficient privacy violation detection model(EPVDM)for OSN.Design/methodology/approach-In recent months,the prominent position of both industry and academia has been dominated by privateness,its breaches and strategies to dodge privacy violations.Corporations around the world have become aware of the effects of violating privacy and its effect on them and other stakeholders.Once privacy violations are detected,they must be reported to those affected and it’s supposed to be mandatory to make them to take the next action.Although there are different approaches to detecting breaches of privacy,most strategies do not have a functioning tool that can show the values of its subject heading.An EPVDM for Facebook,based on a deep neural network,is proposed in this research paper.Findings-The main aim of EPVDM is to identify and avoid potential privacy breaches on Facebook in the future.Experimental analyses in comparison with major intrusion detection system(IDS)to detect privacy violation show that the proposed methodology is robust,precise and scalable.The chances of breaches or possibilities of privacy violations can be identified very accurately.Originality/value-All the resultant is compared with well popular methodologies like adaboost(AB),decision tree(DT),linear regression(LR),random forest(RF)and support vector machine(SVM).It’s been identified from the analysis that the proposed model outperformed the existing techniques in terms of accuracy(94%),precision(99.1%),recall(92.43%),f-score(95.43%)and violation detection rate(>98.5%).展开更多
基金This research work was funded by Institution Fund projects under Grant No.(IFPRC-215-249-2020)Therefore,authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication where secrecy needs to be guaranteed in real time.Practically,AI techniques can be utilized to design image steganographic techniques in IIoT.In addition,encryption techniques act as an important role to save the actual information generated from the IIoT devices to avoid unauthorized access.In order to accomplish secure data transmission in IIoT environment,this study presents novel encryption with image steganography based data hiding technique(EISDHT)for IIoT environment.The proposed EIS-DHT technique involves a new quantum black widow optimization(QBWO)to competently choose the pixel values for hiding secrete data in the cover image.In addition,the multi-level discrete wavelet transform(DWT)based transformation process takes place.Besides,the secret image is divided into three R,G,and B bands which are then individually encrypted using Blowfish,Twofish,and Lorenz Hyperchaotic System.At last,the stego image gets generated by placing the encrypted images into the optimum pixel locations of the cover image.In order to validate the enhanced data hiding performance of the EIS-DHT technique,a set of simulation analyses take place and the results are inspected interms of different measures.The experimental outcomes stated the supremacy of the EIS-DHT technique over the other existing techniques and ensure maximum security.
基金funded by Institutional Fund Projects under Grant No.(IFPIP:511-611-1443).
文摘The recent adoption of satellite technologies,unmanned aerial vehicles(UAVs)and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality.But,security concerns with drones were increasing as drone nodes have been striking targets for cyberattacks because of immensely weak inbuilt and growing poor security volumes.This study presents an Archimedes Optimization with Deep Learning based Aerial Image Classification and Intrusion Detection(AODL-AICID)technique in secure UAV networks.The presented AODLAICID technique concentrates on two major processes:image classification and intrusion detection.For aerial image classification,the AODL-AICID technique encompasses MobileNetv2 feature extraction,Archimedes Optimization Algorithm(AOA)based hyperparameter optimizer,and backpropagation neural network(BPNN)based classifier.In addition,the AODLAICID technique employs a stacked bi-directional long short-term memory(SBLSTM)model to accomplish intrusion detection for cybersecurity in UAV networks.At the final stage,the Nadam optimizer is utilized for parameter tuning of the SBLSTM approach.The experimental validation of the AODLAICID technique is tested and the obtained values reported the improved performance of the AODL-AICID technique over other models.
文摘Purpose-Virtually unlimited amounts of data collection by cybersecurity systems put people at risk of having their privacy violated.Social networks like Facebook on the Internet provide an overplus of knowledge concerning their users.Although users relish exchanging data online,only some data are meant to be interpreted by those who see value in it.It is now essential for online social network(OSN)to regulate the privacy of their users on the Internet.This paper aims to propose an efficient privacy violation detection model(EPVDM)for OSN.Design/methodology/approach-In recent months,the prominent position of both industry and academia has been dominated by privateness,its breaches and strategies to dodge privacy violations.Corporations around the world have become aware of the effects of violating privacy and its effect on them and other stakeholders.Once privacy violations are detected,they must be reported to those affected and it’s supposed to be mandatory to make them to take the next action.Although there are different approaches to detecting breaches of privacy,most strategies do not have a functioning tool that can show the values of its subject heading.An EPVDM for Facebook,based on a deep neural network,is proposed in this research paper.Findings-The main aim of EPVDM is to identify and avoid potential privacy breaches on Facebook in the future.Experimental analyses in comparison with major intrusion detection system(IDS)to detect privacy violation show that the proposed methodology is robust,precise and scalable.The chances of breaches or possibilities of privacy violations can be identified very accurately.Originality/value-All the resultant is compared with well popular methodologies like adaboost(AB),decision tree(DT),linear regression(LR),random forest(RF)and support vector machine(SVM).It’s been identified from the analysis that the proposed model outperformed the existing techniques in terms of accuracy(94%),precision(99.1%),recall(92.43%),f-score(95.43%)and violation detection rate(>98.5%).