We studied the influence of east and west aspects on floristic composition, diversity, structure and treeline of afromontane cloud forests at Rira in the Bale Mountains, southeast Ethiopia. In addition, we studied how...We studied the influence of east and west aspects on floristic composition, diversity, structure and treeline of afromontane cloud forests at Rira in the Bale Mountains, southeast Ethiopia. In addition, we studied how aspect relates to and/or interacts with other topographic and edaphic factors in influencing vegetation diversity. Strati- fied systematic plot sampling was used to survey the floristic composition, diversity and structure of forests on east- and west-facing slopes. The sample plot size was 20 x 20 m and a total of 36 plots were inventoried. A total of 72 composite soil samples were collected and analysed. Woody species richness of the forest on the east-facing slope was 1.7 times higher than on the west-facing slope. Shannon, Simpson and Log-series alpha diversity indices and evenness of forests on the east-facing slope were sig- nificantly higher than on the west-facing slope. NMDS ordination indicated that the east- and west-facing slopes formed two clusters of species and aspect explained 55.2 % and 10.4 % of the variation in species richness and abun- dance, respectively. There was no significant difference between aspects in stand structure except in dominantheight, which was higher on the east-facing slopes. There was significant interaction between aspect and elevation in influencing woody species diversity. The four plant com- munity groups, which were identified using cluster and indicator species analysis were represented differently on the east and west aspects. The treeline on the east-facing slope (3352 m) was located about 110 m higher than on the west-facing slope (3240 m). Soil moisture deficiency was unlikely to be a limiting factor on either site. Near the equator, east-west aspect was shown to have considerable impact on floristic composition, diversity, structure, and treeline position of montane forests. Diurnal cloud move- ment patterns and its impact on microclimate of slope aspect should be taken into account in future studies of cloud forest diversity, structure, and treeline position.展开更多
Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the s...Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the structure has not been studied. This study analyzed the effect of LSB and SB on selected soil properties, when compared with nonterraced cropland. The Bokole watershed was divided into two units. From upper watershed, three croplands with LSB (aged 4, 6, and 9 years) and three nonterraced croplands each adjacent to one of the LSB were selected. Similarly, in lower watershed, SB aged 4, 6, and 8 years and three nonterraced croplands each adjacent to one of the SB were selected. From each cropland with LSB and SB, three composite soil samples (rep licates) were collected systematically in X designed rectangular plot. From each nonterraced cropland, three composite soil samples (replicates) were collected in X designed square plot. A total of 36 soil samples were analyzed for Soil Organic Carbon (SOC), Total Nitrogen (TN), Available Phosphorus (AP), Available Potassium (AK), pH, and Cation Exchange Capacity (CEC) following standard laboratory procedures. Most soil parameters were not significantly different in cropland with LSB and SB compared to nonterraced. However, in LSB aged 4 years and SB aged 6 years AP and pH were significantly less than their adjacent-nonterraced cropland. In SB aged 8 years, SOC, AP, AK, and pH were also significantly less than adjacent-nonterraced cropland. Past erosion, and past land uses are likely factors contributed to the observed result. It was inferred that the mean con tribution of LSB and SB alone for crop production with regard to analyzed soil parameters was not significant in the considered sites. Additional soil fertility management practices should be incorporated for better effect.展开更多
基金financially supported by the Department of Forest Sciences,University of Helsinki
文摘We studied the influence of east and west aspects on floristic composition, diversity, structure and treeline of afromontane cloud forests at Rira in the Bale Mountains, southeast Ethiopia. In addition, we studied how aspect relates to and/or interacts with other topographic and edaphic factors in influencing vegetation diversity. Strati- fied systematic plot sampling was used to survey the floristic composition, diversity and structure of forests on east- and west-facing slopes. The sample plot size was 20 x 20 m and a total of 36 plots were inventoried. A total of 72 composite soil samples were collected and analysed. Woody species richness of the forest on the east-facing slope was 1.7 times higher than on the west-facing slope. Shannon, Simpson and Log-series alpha diversity indices and evenness of forests on the east-facing slope were sig- nificantly higher than on the west-facing slope. NMDS ordination indicated that the east- and west-facing slopes formed two clusters of species and aspect explained 55.2 % and 10.4 % of the variation in species richness and abun- dance, respectively. There was no significant difference between aspects in stand structure except in dominantheight, which was higher on the east-facing slopes. There was significant interaction between aspect and elevation in influencing woody species diversity. The four plant com- munity groups, which were identified using cluster and indicator species analysis were represented differently on the east and west aspects. The treeline on the east-facing slope (3352 m) was located about 110 m higher than on the west-facing slope (3240 m). Soil moisture deficiency was unlikely to be a limiting factor on either site. Near the equator, east-west aspect was shown to have considerable impact on floristic composition, diversity, structure, and treeline position of montane forests. Diurnal cloud move- ment patterns and its impact on microclimate of slope aspect should be taken into account in future studies of cloud forest diversity, structure, and treeline position.
文摘Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the structure has not been studied. This study analyzed the effect of LSB and SB on selected soil properties, when compared with nonterraced cropland. The Bokole watershed was divided into two units. From upper watershed, three croplands with LSB (aged 4, 6, and 9 years) and three nonterraced croplands each adjacent to one of the LSB were selected. Similarly, in lower watershed, SB aged 4, 6, and 8 years and three nonterraced croplands each adjacent to one of the SB were selected. From each cropland with LSB and SB, three composite soil samples (rep licates) were collected systematically in X designed rectangular plot. From each nonterraced cropland, three composite soil samples (replicates) were collected in X designed square plot. A total of 36 soil samples were analyzed for Soil Organic Carbon (SOC), Total Nitrogen (TN), Available Phosphorus (AP), Available Potassium (AK), pH, and Cation Exchange Capacity (CEC) following standard laboratory procedures. Most soil parameters were not significantly different in cropland with LSB and SB compared to nonterraced. However, in LSB aged 4 years and SB aged 6 years AP and pH were significantly less than their adjacent-nonterraced cropland. In SB aged 8 years, SOC, AP, AK, and pH were also significantly less than adjacent-nonterraced cropland. Past erosion, and past land uses are likely factors contributed to the observed result. It was inferred that the mean con tribution of LSB and SB alone for crop production with regard to analyzed soil parameters was not significant in the considered sites. Additional soil fertility management practices should be incorporated for better effect.