With exhaustion of fossil fuels and the deterioration of global environment,widespread and intensive researches have been concentrated on clean and sustainable alternative energy sources,such as metal-air batteries[1]...With exhaustion of fossil fuels and the deterioration of global environment,widespread and intensive researches have been concentrated on clean and sustainable alternative energy sources,such as metal-air batteries[1],fuel cells[2]and water splitting devices[3].Electrocatalytic oxidation of water to O2(oxygen evolution reaction,OER)is a vital chemical process involved in energy storage and conversion from renewable sources in form of molecular fuels such as H2 via water electrolysis,which has attracted a great amount of research efforts in the past few years[4,5].Nowadays,RuO2 and IrO2 are widely used as typical excellent OER electrocatalysts.However,their high-cost and scarce nature restricts the broadly commercial application of those materials[6,7].Hence,there is an urgent demand to develop low cost,highly efficient,and superb stable OER catalysts.展开更多
基金financially supported by the National Natural Science Foundation of China(U1707603,21521005,21975013,21901017)the National Key Research and Development Program of China(2017YFA0206500,2018YFA0702000)+2 种基金Beijing Natural Science Foundation(2172042)PetroChina Innovation Foundationthe Fundamental Research Funds for the Central Universities。
文摘With exhaustion of fossil fuels and the deterioration of global environment,widespread and intensive researches have been concentrated on clean and sustainable alternative energy sources,such as metal-air batteries[1],fuel cells[2]and water splitting devices[3].Electrocatalytic oxidation of water to O2(oxygen evolution reaction,OER)is a vital chemical process involved in energy storage and conversion from renewable sources in form of molecular fuels such as H2 via water electrolysis,which has attracted a great amount of research efforts in the past few years[4,5].Nowadays,RuO2 and IrO2 are widely used as typical excellent OER electrocatalysts.However,their high-cost and scarce nature restricts the broadly commercial application of those materials[6,7].Hence,there is an urgent demand to develop low cost,highly efficient,and superb stable OER catalysts.