The addition of ectomycorrhizal fungi(ECMF),beneficial rhizosphere microorganisms,to the soil can pro-mote plant growth and resistance.Here,Populus davidi-ana×Populus bolleana tissue culture seedlings were grown ...The addition of ectomycorrhizal fungi(ECMF),beneficial rhizosphere microorganisms,to the soil can pro-mote plant growth and resistance.Here,Populus davidi-ana×Populus bolleana tissue culture seedlings were grown for 3 months in soils inoculated with one of the species,then seedlings were assessed for mycorrhizal colonization rate and growth,physiological and root traits.Suillus luteus and Populus involutus each formed ectomycorrhizal associa-tions with the seedlings.Seedling height,ground diameter,biomass,and leaf area were significantly greater after treat-ment with ECMF than in the non-inoculated controls.Treat-ment improved all physiological and root variables assessed(chlorophylls and carotenoids,cellulose,and soluble sugars and proteins;root length,surface area,projected area,mean diameter,volume,number of root tips).Seedlings inocu-lated with S.luteus outperformed those inoculated with P.involutus.展开更多
ZSM-5 aggregates consisting of superfine and hierarchical nanocrystals(combined with micropores and intra-crystalline mesopores) with an average size of 30 nm were prepared through one-pot synthesis with the assistanc...ZSM-5 aggregates consisting of superfine and hierarchical nanocrystals(combined with micropores and intra-crystalline mesopores) with an average size of 30 nm were prepared through one-pot synthesis with the assistance of anionic polyacrylamide(APAM). The resultant zeolites(AHN-ZSM-5) were characterized by XRD, ICP-OES, SEM, TEM, BET, NH_3-TPD, Py-IR, and TG analyses and evaluated in the methanol to gasoline(MTG) reaction. Characterization results show that the hierarchical ZSM-5 aggregates possessed two kinds of mesopores, namely inter-and intra-crystalline mesopores. The amount of APAM considerably influenced the mesoporosity and textural properties of AHN-ZSM-5 zeolites. With the addition of APAM in the synthesis, the AHN-ZSM-5 zeolites exhibited large mesopore volume, large external surface area, and appropriate acidity. When applied in the MTG reaction, AHN-ZSM-5 demonstrated a catalytic lifetime that was 1.6 times longer than that of conventional ZSM-5 synthesized in the absence of APAM.展开更多
基金part of the Liaoning Provincial Department of Education project LJKZ0684supported by the National Natural Science Foundation of China (31800542)
文摘The addition of ectomycorrhizal fungi(ECMF),beneficial rhizosphere microorganisms,to the soil can pro-mote plant growth and resistance.Here,Populus davidi-ana×Populus bolleana tissue culture seedlings were grown for 3 months in soils inoculated with one of the species,then seedlings were assessed for mycorrhizal colonization rate and growth,physiological and root traits.Suillus luteus and Populus involutus each formed ectomycorrhizal associa-tions with the seedlings.Seedling height,ground diameter,biomass,and leaf area were significantly greater after treat-ment with ECMF than in the non-inoculated controls.Treat-ment improved all physiological and root variables assessed(chlorophylls and carotenoids,cellulose,and soluble sugars and proteins;root length,surface area,projected area,mean diameter,volume,number of root tips).Seedlings inocu-lated with S.luteus outperformed those inoculated with P.involutus.
基金supported by the National Natural Science Foundation of China (No. 21276183)
文摘ZSM-5 aggregates consisting of superfine and hierarchical nanocrystals(combined with micropores and intra-crystalline mesopores) with an average size of 30 nm were prepared through one-pot synthesis with the assistance of anionic polyacrylamide(APAM). The resultant zeolites(AHN-ZSM-5) were characterized by XRD, ICP-OES, SEM, TEM, BET, NH_3-TPD, Py-IR, and TG analyses and evaluated in the methanol to gasoline(MTG) reaction. Characterization results show that the hierarchical ZSM-5 aggregates possessed two kinds of mesopores, namely inter-and intra-crystalline mesopores. The amount of APAM considerably influenced the mesoporosity and textural properties of AHN-ZSM-5 zeolites. With the addition of APAM in the synthesis, the AHN-ZSM-5 zeolites exhibited large mesopore volume, large external surface area, and appropriate acidity. When applied in the MTG reaction, AHN-ZSM-5 demonstrated a catalytic lifetime that was 1.6 times longer than that of conventional ZSM-5 synthesized in the absence of APAM.