Buoyancy material technology is of paramount importance for the development of marine engineering.In this study,a novel carbon fiber buoyancy material(CFBM)is designed and prepared by utilizing composite circular tube...Buoyancy material technology is of paramount importance for the development of marine engineering.In this study,a novel carbon fiber buoyancy material(CFBM)is designed and prepared by utilizing composite circular tubes with light weight and high strength.To reveal the failure mechanism under hydrostatic pressure,a finite element model(FEM)based on the three-dimensional Hashin and Yeh failure criterion is developed and validated experimentally.Both the simulated and experimental results indicate that the hydrostatic strength of the CFBM is mainly determined by the buckling of carbon fiber tubes located at the edges of the CFBM.Parametric analysis is conducted to investigate the effect of the number of unit-cells,length,and wall thickness of carbon fiber tubes on the mechanical properties of the CFBM.In addition,a 60-day water absorption test of the CFBM at 12.5 MPa is conducted to characterize its durability.Experimental results indicate that the maximum water absorption rate of the CFBM is 0.59%and the hydrostatic strength is reduced by only 7.97%during the 60-day test period.Finally,the designed CFBM is used at the water depth of 1000 m as buoyancy material.Compared with traditional buoyancy materials,the proposed CFBM has significant advantages in both hydrostatic strength and density.This work has broad engineering application prospects and is of high significance for promoting the implementation of carbon fiber composites in the ocean engineering field.展开更多
基金supported by the Heilongjiang Touyan Innovation Team Program(Grant No.TY2000010602)。
文摘Buoyancy material technology is of paramount importance for the development of marine engineering.In this study,a novel carbon fiber buoyancy material(CFBM)is designed and prepared by utilizing composite circular tubes with light weight and high strength.To reveal the failure mechanism under hydrostatic pressure,a finite element model(FEM)based on the three-dimensional Hashin and Yeh failure criterion is developed and validated experimentally.Both the simulated and experimental results indicate that the hydrostatic strength of the CFBM is mainly determined by the buckling of carbon fiber tubes located at the edges of the CFBM.Parametric analysis is conducted to investigate the effect of the number of unit-cells,length,and wall thickness of carbon fiber tubes on the mechanical properties of the CFBM.In addition,a 60-day water absorption test of the CFBM at 12.5 MPa is conducted to characterize its durability.Experimental results indicate that the maximum water absorption rate of the CFBM is 0.59%and the hydrostatic strength is reduced by only 7.97%during the 60-day test period.Finally,the designed CFBM is used at the water depth of 1000 m as buoyancy material.Compared with traditional buoyancy materials,the proposed CFBM has significant advantages in both hydrostatic strength and density.This work has broad engineering application prospects and is of high significance for promoting the implementation of carbon fiber composites in the ocean engineering field.