Epilepsy is a serious neurological disorder;however,the effectiveness of current medications is often suboptimal.Recently,stem cell technology has demonstrated remarkable therapeutic potential in addressing various ne...Epilepsy is a serious neurological disorder;however,the effectiveness of current medications is often suboptimal.Recently,stem cell technology has demonstrated remarkable therapeutic potential in addressing various neurological diseases,igniting interest in its applicability for epilepsy treatment.This comprehensive review summarizes different therapeutic approaches utilizing various types of stem cells.Preclinical experiments have explored the use and potential therapeutic effects of mesenchymal stem cells,including genetically modified variants.Clinical trials involving patientderived mesenchymal stem cells have shown promising results,with reductions in the frequency of epileptic seizures and improvements in neurological,cognitive,and motor functions reported.Another promising therapeutic strategy involves neural stem cells.These cells can be cultured outside the body and directed to differentiate into specific cell types.The transplant of neural stem cells has the potential to replace lost inhibitory interneurons,providing a novel treatment avenue for epilepsy.Embryonic stem cells are characterized by their significant capacity for self-renewal and their ability to differentiate into any type of somatic cell.In epilepsy treatment,embryonic stem cells can serve three primary functions:neuron regeneration,the maintenance of cellular homeostasis,and restorative activity.One notable strategy involves differentiating embryonic stem cells intoγ-aminobutyric acidergic neurons for transplantation into lesion sites.This approach is currently undergoing clinical trials and could be a breakthrough in the treatment of refractory epilepsy.Induced pluripotent stem cells share the same genetic background as the donor,thereby reducing the risk of immune rejection and addressing ethical concerns.However,research on induced pluripotent stem cell therapy remains in the preclinical stage.Despite the promise of stem cell therapies for epilepsy,several limitations must be addressed.Safety concerns persist,including issues such as tumor formation,and the low survival rate of transplanted cells remains a significant challenge.Additionally,the high cost of these treatments may be prohibitive for some patients.In summary,stem cell therapy shows considerable promise in managing epilepsy,but further research is needed to overcome its existing limitations and enhance its clinical applicability.展开更多
Inefficient photo-carrier separation and sluggish photoreaction dynamics appreciably undermine the photocatalytic decontamination efficacy of photocatalysts.Herein,an S-scheme Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)heterojunc...Inefficient photo-carrier separation and sluggish photoreaction dynamics appreciably undermine the photocatalytic decontamination efficacy of photocatalysts.Herein,an S-scheme Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)heterojunction with interfacial Mo-S chemical bond is designed as an efficient photocatalyst.In this integrated photosystem,Bi2MoO6 and Mn_(0.5)Cd_(0.5)S function as oxidation and reduction centers of Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)microspheres,respectively.Importantly,the unique charge transfer mechanism in the chemically bonded S-scheme heterojunction with Mo-S bond as atom-scale charge transport highway effectively inhibits the photocorrosion of Mn_(0.5)Cd_(0.5)S and the recombination of photo-generated electron-hole pairs,endowing Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)photocatalyst with excellent photocatalytic decontamination performance and stability.Besides,integration of Mn_(0.5)Cd_(0.5)S nanocrystals into Bi2MoO6 improves hydrophilicity,conducive to the photoreactions.Strikingly,compared with Mn_(0.5)Cd_(0.5)S and Bi2MoO6,the Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)unveils much augmented photoactivity in tetracycline eradication,among which Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)-2 possesses the highest activity with the rate constant up to 0.0323 min-1,prominently outperforming other counterparts.This research offers a chemical bonding engineering combining with S-scheme heterojunction strategy for constructing extraordinary photocatalysts for environmental purification.展开更多
为避免异构网络下的电力无线网络阻塞,提高电力无线网络传输的可靠性,提出一种异构网络下的电力无线网络自适应选择方法。首先建立以网络负载率、用户密度、平均信息年龄、用户满意度的电力无线网络评分,并构建电力无线网络评分最大化...为避免异构网络下的电力无线网络阻塞,提高电力无线网络传输的可靠性,提出一种异构网络下的电力无线网络自适应选择方法。首先建立以网络负载率、用户密度、平均信息年龄、用户满意度的电力无线网络评分,并构建电力无线网络评分最大化的目标函数;然后采用双深度Q网络(Double Deep Q-Network,DDQN)对目标函数进行求解,并引入双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)对电力无线网络历史流量进行学习,并预测未来时刻量,将预测结果反馈到求解的优化策略中进行调整;最后通过仿真实验进行验证。结果表明,本方法不同业务量下,平均信息年龄为85.67 ms,网络切换率为36%,网络可靠性为99.58%,相较于对比方法,可明显减少网络频繁切换和网络拥塞等问题。由此得出,本方法能综合考虑异构网络下的电力无线网络网络负载率、用户密度、平均信息年龄、用户满意度,并及时调整电力无线网络流量,为不同业务分配更合适的接入网络,避免了电力无线网络阻塞和频繁切换,提高了电力无线网络传输的可靠性。展开更多
Background:The aim was to explore the effect of macrophage polarization and macrophage-to-myofibroblast transition(MMT)in silicosis.Methods:Male Wistar rats were divided into a control group and a silicosis group deve...Background:The aim was to explore the effect of macrophage polarization and macrophage-to-myofibroblast transition(MMT)in silicosis.Methods:Male Wistar rats were divided into a control group and a silicosis group developed using a HOPE MED 8050 dynamic automatic dusting system.Murine mac-rophage MH-S cells were randomly divided into a control group and an SiO_(2) group.The pathological changes in lung tissue were observed using hematoxylin and eosin(HE)and Van Gieson(VG)staining.The distribution and location of macrophage marker(F4/80),M1 macrophage marker(iNOS),M2 macrophage marker(CD206),and myofibroblast marker(α-smooth muscle actin[α-SMA])were detected using immu-nohistochemical and immunofluorescent staining.The expression changes in iNOS,Arg,α-SMA,vimentin,and type I collagen(Col I)were measured using Western blot.Results:The results of HE and VG staining showed obvious silicon nodule formation and the distribution of thick collagen fibers in the lung tissue of the silicosis group.Macrophage marker F4/80 increased gradually from 8 to 32 weeks after exposure to silica.Immunohistochemical and immunofluorescent staining results revealed that there were more iNOS-positive cells and some CD206-positive cells in the lung tissue of the silicosis group at 8 weeks.More CD206-positive cells were found in the silicon nodules of the lung tissues in the silicosis group at 32 weeks.Western blot analysis showed that the expressions of Inducible nitric oxide synthase and Arg protein in the lung tissues of the silicosis group were upregulated compared with those of the con-trol group.The results of immunofluorescence staining showed the co-expression of F4/80,α-SMA,and Col I,and CD206 andα-SMA were co-expressed in the lung tissue of the silicosis group.The extracted rat alveolar lavage fluid revealed F4/80+α-SMA+,CD206+α-SMA+,and F4/80+α-SMA+Col I+cells using immunofluorescence staining.Similar results were also found in MH-S cells induced by SiO_(2).Conclusions:The development of silicosis is accompanied by macrophage polarization and MMT.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82471471(to WJ),82471485(to FY)Shaanxi Province Special Support Program for Leading Talents in Scientific and Technological Innovation,No.tzjhjw(to WJ)+1 种基金Shaanxi Key Research and Development Plan Project,No.2023-YBSF-353(to XW)the Joint Fund Project of Innovation Research Institute of Xijing Hospital,No.LHJJ24JH13(to ZS)。
文摘Epilepsy is a serious neurological disorder;however,the effectiveness of current medications is often suboptimal.Recently,stem cell technology has demonstrated remarkable therapeutic potential in addressing various neurological diseases,igniting interest in its applicability for epilepsy treatment.This comprehensive review summarizes different therapeutic approaches utilizing various types of stem cells.Preclinical experiments have explored the use and potential therapeutic effects of mesenchymal stem cells,including genetically modified variants.Clinical trials involving patientderived mesenchymal stem cells have shown promising results,with reductions in the frequency of epileptic seizures and improvements in neurological,cognitive,and motor functions reported.Another promising therapeutic strategy involves neural stem cells.These cells can be cultured outside the body and directed to differentiate into specific cell types.The transplant of neural stem cells has the potential to replace lost inhibitory interneurons,providing a novel treatment avenue for epilepsy.Embryonic stem cells are characterized by their significant capacity for self-renewal and their ability to differentiate into any type of somatic cell.In epilepsy treatment,embryonic stem cells can serve three primary functions:neuron regeneration,the maintenance of cellular homeostasis,and restorative activity.One notable strategy involves differentiating embryonic stem cells intoγ-aminobutyric acidergic neurons for transplantation into lesion sites.This approach is currently undergoing clinical trials and could be a breakthrough in the treatment of refractory epilepsy.Induced pluripotent stem cells share the same genetic background as the donor,thereby reducing the risk of immune rejection and addressing ethical concerns.However,research on induced pluripotent stem cell therapy remains in the preclinical stage.Despite the promise of stem cell therapies for epilepsy,several limitations must be addressed.Safety concerns persist,including issues such as tumor formation,and the low survival rate of transplanted cells remains a significant challenge.Additionally,the high cost of these treatments may be prohibitive for some patients.In summary,stem cell therapy shows considerable promise in managing epilepsy,but further research is needed to overcome its existing limitations and enhance its clinical applicability.
文摘Inefficient photo-carrier separation and sluggish photoreaction dynamics appreciably undermine the photocatalytic decontamination efficacy of photocatalysts.Herein,an S-scheme Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)heterojunction with interfacial Mo-S chemical bond is designed as an efficient photocatalyst.In this integrated photosystem,Bi2MoO6 and Mn_(0.5)Cd_(0.5)S function as oxidation and reduction centers of Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)microspheres,respectively.Importantly,the unique charge transfer mechanism in the chemically bonded S-scheme heterojunction with Mo-S bond as atom-scale charge transport highway effectively inhibits the photocorrosion of Mn_(0.5)Cd_(0.5)S and the recombination of photo-generated electron-hole pairs,endowing Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)photocatalyst with excellent photocatalytic decontamination performance and stability.Besides,integration of Mn_(0.5)Cd_(0.5)S nanocrystals into Bi2MoO6 improves hydrophilicity,conducive to the photoreactions.Strikingly,compared with Mn_(0.5)Cd_(0.5)S and Bi2MoO6,the Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)unveils much augmented photoactivity in tetracycline eradication,among which Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)-2 possesses the highest activity with the rate constant up to 0.0323 min-1,prominently outperforming other counterparts.This research offers a chemical bonding engineering combining with S-scheme heterojunction strategy for constructing extraordinary photocatalysts for environmental purification.
文摘为避免异构网络下的电力无线网络阻塞,提高电力无线网络传输的可靠性,提出一种异构网络下的电力无线网络自适应选择方法。首先建立以网络负载率、用户密度、平均信息年龄、用户满意度的电力无线网络评分,并构建电力无线网络评分最大化的目标函数;然后采用双深度Q网络(Double Deep Q-Network,DDQN)对目标函数进行求解,并引入双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)对电力无线网络历史流量进行学习,并预测未来时刻量,将预测结果反馈到求解的优化策略中进行调整;最后通过仿真实验进行验证。结果表明,本方法不同业务量下,平均信息年龄为85.67 ms,网络切换率为36%,网络可靠性为99.58%,相较于对比方法,可明显减少网络频繁切换和网络拥塞等问题。由此得出,本方法能综合考虑异构网络下的电力无线网络网络负载率、用户密度、平均信息年龄、用户满意度,并及时调整电力无线网络流量,为不同业务分配更合适的接入网络,避免了电力无线网络阻塞和频繁切换,提高了电力无线网络传输的可靠性。
基金The National Natural Science Foundation of China(no.82204006)the Science and Technology of Project of Hebei Education Department(QN2022009)+1 种基金the Provincial Graduate Student Innovation Funding Project of Hebei Province(CXZZBS2022104)the National Natural Science Foundation of Hebei Province(H2020209292).
文摘Background:The aim was to explore the effect of macrophage polarization and macrophage-to-myofibroblast transition(MMT)in silicosis.Methods:Male Wistar rats were divided into a control group and a silicosis group developed using a HOPE MED 8050 dynamic automatic dusting system.Murine mac-rophage MH-S cells were randomly divided into a control group and an SiO_(2) group.The pathological changes in lung tissue were observed using hematoxylin and eosin(HE)and Van Gieson(VG)staining.The distribution and location of macrophage marker(F4/80),M1 macrophage marker(iNOS),M2 macrophage marker(CD206),and myofibroblast marker(α-smooth muscle actin[α-SMA])were detected using immu-nohistochemical and immunofluorescent staining.The expression changes in iNOS,Arg,α-SMA,vimentin,and type I collagen(Col I)were measured using Western blot.Results:The results of HE and VG staining showed obvious silicon nodule formation and the distribution of thick collagen fibers in the lung tissue of the silicosis group.Macrophage marker F4/80 increased gradually from 8 to 32 weeks after exposure to silica.Immunohistochemical and immunofluorescent staining results revealed that there were more iNOS-positive cells and some CD206-positive cells in the lung tissue of the silicosis group at 8 weeks.More CD206-positive cells were found in the silicon nodules of the lung tissues in the silicosis group at 32 weeks.Western blot analysis showed that the expressions of Inducible nitric oxide synthase and Arg protein in the lung tissues of the silicosis group were upregulated compared with those of the con-trol group.The results of immunofluorescence staining showed the co-expression of F4/80,α-SMA,and Col I,and CD206 andα-SMA were co-expressed in the lung tissue of the silicosis group.The extracted rat alveolar lavage fluid revealed F4/80+α-SMA+,CD206+α-SMA+,and F4/80+α-SMA+Col I+cells using immunofluorescence staining.Similar results were also found in MH-S cells induced by SiO_(2).Conclusions:The development of silicosis is accompanied by macrophage polarization and MMT.