Traditional Medicine(TM),particularly Traditional Chinese Medicine(TCM),is an indispensable component of the global healthcare system,offering unique insights to modern medical science.Clinical efficacy is the bedrock...Traditional Medicine(TM),particularly Traditional Chinese Medicine(TCM),is an indispensable component of the global healthcare system,offering unique insights to modern medical science.Clinical efficacy is the bedrock for the inheritance and development of TM.To meet the growing demand for high-quality healthcare,it is imperative to integrate TM with modern technology to address the issue of insufficient evidence for the efficacy of TM.展开更多
Age-related macular degeneration(AMD)is a disease that affects the vision of elderly individuals worldwide.Although current therapeutics have shown effectiveness against AMD,some patients may remain unresponsive and c...Age-related macular degeneration(AMD)is a disease that affects the vision of elderly individuals worldwide.Although current therapeutics have shown effectiveness against AMD,some patients may remain unresponsive and continue to experience disease progression.Therefore,in-depth knowledge of the mechanism underlying AMD pathogenesis is urgently required to identify potential drug targets for AMD treatment.Recently,studies have suggested that dysfunction of mitochondria can lead to the aggregation of reactive oxygen species(ROS)and activation of the cyclic GMP-AMP synthase(cGAS)/stimulator of interferon genes(STING)innate immunity pathways,ultimately resulting in sterile inflammation and cell death in various cells,such as cardiomyocytes and macrophages.Therefore,combining strategies targeting mitochondrial dysfunction and inflammatory mediators may hold great potential in facilitating AMD management.Notably,emerging evidence indicates that natural products targeting mitochondrial quality control(MQC)and the cGAS/STING innate immunity pathways exhibit promise in treating AMD.Here,we summarize phytochemicals that could directly or indirectly influence the MQC and the cGAS/STING innate immunity pathways,as well as their interconnected mediators,which have the potential to mitigate oxidative stress and suppress excessive inflammatory responses,thereby hoping to offer new insights into therapeutic interventions for AMD treatment.展开更多
Methane,the primary constituent of natural gas,shale gas,and flammable ice,serves as a crucial carbon-based energy source and chemical feedstock.Traditional gas reserves are universally acknowledged as limited and non...Methane,the primary constituent of natural gas,shale gas,and flammable ice,serves as a crucial carbon-based energy source and chemical feedstock.Traditional gas reserves are universally acknowledged as limited and non-renewable resources over an extended timespan stretching from decades to millennia.Biomethane,with its unique renewable properties,showcases remarkable development potential and presents a compelling supplement and even alternative for fossil fuel.Although catalytic hydrothermal processes appear as promising valorization routes to transfer biomass to sustainable methane,the safety and supply source of high-pressure hydrogen remain key factors restricting the widespread application.Herein,a catalytic approach without an external hydrogen source was developed to transform waste biomass resources into CH_(4)under the Ni-Mo catalyst.The total carbon yield of gas products reached up to 92.2%,of which the yield of methane and C2–C4 hydrocarbons were 44.9%and 3.0%,respectively.And it’s calculated that approximately 343.6 liters of CH_(4)could potentially be generated from 1 kilogram of raw biomass.Ni-based catalysts exhibited the robust activity in cleaving C–C and C–O bonds.And the introduction of an appropriate amount of molybdenum significantly enhanced catalytic performance of reforming and subsequent methanation reaction,likely due to the high adsorption capacity of highly dispersed Ni-Mo catalysts for carbon monoxide and hydrogen molecules,facilitating the methanation reaction.The pathway of catalytic methane production might be inferred that CO,H_(2)and a large number of oxygen-containing intermediates were formed via decarbonylation,dehydrogenation,and retro-aldol condensation reaction under hydrothermal condition.These intermediates then underwent the reforming reaction to generate H_(2)and CO_(2),ultimately forming CH_(4)through the methanation reaction.展开更多
文摘Traditional Medicine(TM),particularly Traditional Chinese Medicine(TCM),is an indispensable component of the global healthcare system,offering unique insights to modern medical science.Clinical efficacy is the bedrock for the inheritance and development of TM.To meet the growing demand for high-quality healthcare,it is imperative to integrate TM with modern technology to address the issue of insufficient evidence for the efficacy of TM.
基金funded by Chinese NSFC(Grant Nos.:82373336,82303238,and U22A20311,Sichuan Science and Technology Department,China(GrantNos.:2024NSFSC1945,,and 2023NSFSC0667)the Third People's Hospital of Chengdu Clinical Research Program,China(Grant Nos.:CSY-YN-01-2023-013,CSYYN-01-2023-005,and CSY-YN-03-2024-003)+1 种基金Sichuan University“From O to 1”Innovative Research Project,China(Project No.:2023SCUH0024)Health Commission of Chengdu,China(Grant No.:2024291).
文摘Age-related macular degeneration(AMD)is a disease that affects the vision of elderly individuals worldwide.Although current therapeutics have shown effectiveness against AMD,some patients may remain unresponsive and continue to experience disease progression.Therefore,in-depth knowledge of the mechanism underlying AMD pathogenesis is urgently required to identify potential drug targets for AMD treatment.Recently,studies have suggested that dysfunction of mitochondria can lead to the aggregation of reactive oxygen species(ROS)and activation of the cyclic GMP-AMP synthase(cGAS)/stimulator of interferon genes(STING)innate immunity pathways,ultimately resulting in sterile inflammation and cell death in various cells,such as cardiomyocytes and macrophages.Therefore,combining strategies targeting mitochondrial dysfunction and inflammatory mediators may hold great potential in facilitating AMD management.Notably,emerging evidence indicates that natural products targeting mitochondrial quality control(MQC)and the cGAS/STING innate immunity pathways exhibit promise in treating AMD.Here,we summarize phytochemicals that could directly or indirectly influence the MQC and the cGAS/STING innate immunity pathways,as well as their interconnected mediators,which have the potential to mitigate oxidative stress and suppress excessive inflammatory responses,thereby hoping to offer new insights into therapeutic interventions for AMD treatment.
文摘Methane,the primary constituent of natural gas,shale gas,and flammable ice,serves as a crucial carbon-based energy source and chemical feedstock.Traditional gas reserves are universally acknowledged as limited and non-renewable resources over an extended timespan stretching from decades to millennia.Biomethane,with its unique renewable properties,showcases remarkable development potential and presents a compelling supplement and even alternative for fossil fuel.Although catalytic hydrothermal processes appear as promising valorization routes to transfer biomass to sustainable methane,the safety and supply source of high-pressure hydrogen remain key factors restricting the widespread application.Herein,a catalytic approach without an external hydrogen source was developed to transform waste biomass resources into CH_(4)under the Ni-Mo catalyst.The total carbon yield of gas products reached up to 92.2%,of which the yield of methane and C2–C4 hydrocarbons were 44.9%and 3.0%,respectively.And it’s calculated that approximately 343.6 liters of CH_(4)could potentially be generated from 1 kilogram of raw biomass.Ni-based catalysts exhibited the robust activity in cleaving C–C and C–O bonds.And the introduction of an appropriate amount of molybdenum significantly enhanced catalytic performance of reforming and subsequent methanation reaction,likely due to the high adsorption capacity of highly dispersed Ni-Mo catalysts for carbon monoxide and hydrogen molecules,facilitating the methanation reaction.The pathway of catalytic methane production might be inferred that CO,H_(2)and a large number of oxygen-containing intermediates were formed via decarbonylation,dehydrogenation,and retro-aldol condensation reaction under hydrothermal condition.These intermediates then underwent the reforming reaction to generate H_(2)and CO_(2),ultimately forming CH_(4)through the methanation reaction.