This paper describes the identification of waterflooded zones and the impact of waterflooding on reservoir properties of sandstones of the Funing Formation at the Gao 6 Fault-block of the Gaoji Oilfield,in the Subei B...This paper describes the identification of waterflooded zones and the impact of waterflooding on reservoir properties of sandstones of the Funing Formation at the Gao 6 Fault-block of the Gaoji Oilfield,in the Subei Basin,east China.This work presents a new approach based on a back-propagation neural network using well log data to train the network,and then generating a cross-plot plate to identify waterflooded zones.A neural network was designed and trained,and the results show that the new method is better than traditional methods.For a comparative study,two representative wells at the Gao 6 Fault-block were chosen for analysis:one from a waterflooded zone,and the other from a zone without waterflooding.Results from this analysis were used to develop a better understanding of the impact of waterflooding on reservoir properties.A range of changes are shown to have taken place in the waterflooded zone,including changes in microscopic pore structure,fluids,and minerals.展开更多
Divertor detachment achieved by injecting impurities or increasing density is always accompanied with various local radiation phenomena in the boundary or core plasma. This paper presents the formation and evolution o...Divertor detachment achieved by injecting impurities or increasing density is always accompanied with various local radiation phenomena in the boundary or core plasma. This paper presents the formation and evolution of the high-field-side(HFS) radiation belts during the neon seeding plasma discharge in upper single null configuration with two directions of toroidal magnetic field in EAST tokamak. The neon mixed with deuterium seeding can induce the divertor detachment with strong radiation belts in the HFS scrape-off layer(SOL) region. With the increase of the radiation power, the plasma discharge will transit from H-mode to L-mode, and meanwhile the radiation belts move away from the near X-point to HFS SOL. When the radiation power is high enough, the radiation belts begin to move further to the other X-point along the HFS SOL, and even cause plasma disruption. The results indicate that the behavior of the radiation belts is related to the radiation power, plasma confinement performance and state of divertor detachment, which is useful for developing better feedback control methods to achieve high-performance radiative divertor operation mode.展开更多
Neon(Ne)seeding is used to cool the edge plasma by radiation to protect the divertor tungsten(W)target in the Experimental Advanced Superconducting Tokamak(EAST).The W sputtering in the outer divertor target with Ne s...Neon(Ne)seeding is used to cool the edge plasma by radiation to protect the divertor tungsten(W)target in the Experimental Advanced Superconducting Tokamak(EAST).The W sputtering in the outer divertor target with Ne seeding is assessed by the divertor visible spectroscopy system.It is observed that the W sputtering flux initially increases with Ne concentration in the divertor despite the decreasing plasma temperature.After reaching a maximum around 25 eV,the W sputtering rate starts to decrease,presenting a suppression effect.The effect on the divertor W sputtering flux and yield due to the competition between the increase of the Ne concentration and the decrease of the plasma temperature is discussed.The results show that enough Ne seeding is essential to effectively reduce the electron temperature and thus to suppress W sputtering.Moreover,ELM suppression is observed when Ne and W impurities enter the core plasma,which could be correlated to the enhanced turbulence transport in the pedestal.展开更多
Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon...Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work,and particularly the composite cathode with carbon carrier quality percentage of 20 wt%delivers the specific capacity of 391.2 mAh g^(−1)at 0.1 A g^(−1),outstanding cyclic stability of 92.17%after 3000 cycles at 5 A g^(−1),and remarkable energy density of 553.12 Wh kg^(−1) together with superior coulombic efficiency of~100%.Additionally,the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments,which verifies its tremendous potential in the application of clinical medicine.Besides,Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn–Teller effect and Mn domains distribution combined with theoretical analysis and experimental data.Thus,a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 41172109)the National Natural Science Foundation of Shandong Province (No. ZR2011DM009)the Research Foundation for the Doctoral Program of Higher Education (No. 20110003110014),China
文摘This paper describes the identification of waterflooded zones and the impact of waterflooding on reservoir properties of sandstones of the Funing Formation at the Gao 6 Fault-block of the Gaoji Oilfield,in the Subei Basin,east China.This work presents a new approach based on a back-propagation neural network using well log data to train the network,and then generating a cross-plot plate to identify waterflooded zones.A neural network was designed and trained,and the results show that the new method is better than traditional methods.For a comparative study,two representative wells at the Gao 6 Fault-block were chosen for analysis:one from a waterflooded zone,and the other from a zone without waterflooding.Results from this analysis were used to develop a better understanding of the impact of waterflooding on reservoir properties.A range of changes are shown to have taken place in the waterflooded zone,including changes in microscopic pore structure,fluids,and minerals.
基金Project supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant Nos. 2017YFE0301300 and 2019YFE03030000)the National Natural Science Foundation of China (Grant Nos. 12005004, 11922513, and U19A20113)Anhui Provincial Natural Science Foundation (Grant No. 2008085QA38)。
文摘Divertor detachment achieved by injecting impurities or increasing density is always accompanied with various local radiation phenomena in the boundary or core plasma. This paper presents the formation and evolution of the high-field-side(HFS) radiation belts during the neon seeding plasma discharge in upper single null configuration with two directions of toroidal magnetic field in EAST tokamak. The neon mixed with deuterium seeding can induce the divertor detachment with strong radiation belts in the HFS scrape-off layer(SOL) region. With the increase of the radiation power, the plasma discharge will transit from H-mode to L-mode, and meanwhile the radiation belts move away from the near X-point to HFS SOL. When the radiation power is high enough, the radiation belts begin to move further to the other X-point along the HFS SOL, and even cause plasma disruption. The results indicate that the behavior of the radiation belts is related to the radiation power, plasma confinement performance and state of divertor detachment, which is useful for developing better feedback control methods to achieve high-performance radiative divertor operation mode.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFE0301300,2017YFA0402500,and 2018YFE0303103)the National Natural Science Foundation of China(Grant Nos.12192283 and 12022511)+3 种基金the Users with Excellence Project of Hefei Science Center,CAS(Grant No.2018HSC-UE008)the CASHIPS Director’s Fund(Grant No.BJPY2019B01)the JSPS-CAS Bilateral Joint Research Project(Grant No.GJHZ201984)the Key Research Program of Frontier Sciences of CAS(Grant No.ZDBS-LY-SLH010)。
文摘Neon(Ne)seeding is used to cool the edge plasma by radiation to protect the divertor tungsten(W)target in the Experimental Advanced Superconducting Tokamak(EAST).The W sputtering in the outer divertor target with Ne seeding is assessed by the divertor visible spectroscopy system.It is observed that the W sputtering flux initially increases with Ne concentration in the divertor despite the decreasing plasma temperature.After reaching a maximum around 25 eV,the W sputtering rate starts to decrease,presenting a suppression effect.The effect on the divertor W sputtering flux and yield due to the competition between the increase of the Ne concentration and the decrease of the plasma temperature is discussed.The results show that enough Ne seeding is essential to effectively reduce the electron temperature and thus to suppress W sputtering.Moreover,ELM suppression is observed when Ne and W impurities enter the core plasma,which could be correlated to the enhanced turbulence transport in the pedestal.
基金supported by the National Natural Science Foundation of China[Grant no.51821004].
文摘Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work,and particularly the composite cathode with carbon carrier quality percentage of 20 wt%delivers the specific capacity of 391.2 mAh g^(−1)at 0.1 A g^(−1),outstanding cyclic stability of 92.17%after 3000 cycles at 5 A g^(−1),and remarkable energy density of 553.12 Wh kg^(−1) together with superior coulombic efficiency of~100%.Additionally,the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments,which verifies its tremendous potential in the application of clinical medicine.Besides,Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn–Teller effect and Mn domains distribution combined with theoretical analysis and experimental data.Thus,a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed.