Loss of multiyear ice(MYI)is of great importance for Arctic climate and marine systems and can be monitored using active and passive microwave satellite data.In this paper,we describe an upgraded classification algori...Loss of multiyear ice(MYI)is of great importance for Arctic climate and marine systems and can be monitored using active and passive microwave satellite data.In this paper,we describe an upgraded classification algorithm using the data from the scatterometer and radiometer sensors onboard the Chinese Haiyang-2B(HY-2B)satellite to identify MYI and first-year ice(FYI).The proposed method was established based on K-means and fuzzy clustering(K-means+FC)and was used to focus on the transition zone where the ice condition is complex due to the highly commixing of MYI and FYI,leading to the high challenge for accurate classification of sea ice.The K-means algorithm was applied to preliminarily classify MYI using the combination of scatterometer and radiometer data,followed by applying fuzzy clustering to reclassify MYI in the transition zone.The HY-2B K-means+FC results were compared with the ice type products[including the Ocean and Sea Ice Satellite Application Facility(OSI SAF)sea ice type product and the Equal-Area Scalable Earth-Grid sea ice age dataset],and showed agreement in the time series of MYI extent.Intercomparisons in the transition zone indicated that the HY-2B K-means+FC results can identify more old ice than the OSI SAF product,but with an underestimation in identifying second-year ice.Comparisons between K-means and Kmeans+FC results were performed using regional ice charts and Sentinel-1 synthetic aperture radar(SAR)data.By adding fuzzy clustering,the MYI is more consistent with the ice charts,with the overall accuracy(OA)increasing by 0.9%–6.5%.Comparing against SAR images,it is suggested that more scattered MYI floes can be identified by fuzzy clustering,and the OA is increased by about 3%in middle freezing season and 7%–20%in early and late freezing season.展开更多
To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,...To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,Scanning Electron Microscopy(SEM),and Nuclear Magnetic Resonance(NMR)experiments were conducted.The mechanical property degradation laws and evolution characteristics of the microscopic pore structure of moraine soil under Freeze-Thaw(F-T)conditions were revealed.After F-T cycles,the stress-strain curves of moraine soil showed a strain-softening trend.In the early stage of F-T cycles(0–5 cycles),the shear strength and elastic modulus exhibited damage rate of approximately 10.33%±0.8%and 16.60%±1.2%,respectively.In the later stage(10–20 cycles),the strength parameters fluctuated slightly and tended to stabilize.The number of F-T cycles was negatively exponentially correlated with cohesion,while showing only slight fluctuation in the internal friction angle,thereby extending the Mohr-Coulomb strength criterion for moraine soil under F-T cycles.The NMR experiments quantitatively characterized the evolution of the internal pore structure of moraine soil under F-T cycles.As the number of F-T cycles increased,fine and micro pores gradually expanded and merged due to the frost-heaving effect during the water-ice phase transition,forming larger pores.The proportion of large and medium pores increased to 59.55%±2.1%(N=20),while that of fine and micro pores decreased to 40.45%±2.1%(N=20).The evolution of pore structure characteristics was essentially completed in the later stage of F-T cycles(10–20 cycles).This study provides a theoretical foundation and technical support for major engineering construction and disaster prevention in the Qinghai-Xizang Plateau.展开更多
BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and of...BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and often the condition is prolonged,and the patients are prone to anxiety and uneasiness,which may be related to the harshness of the plateau environment,somatic discomfort due to the lack of oxygen,anxiety about the disease,and other factors.AIM To investigate the effects of cognitive behavioral therapy(CBT)on anxiety,sleep disorders,and hypoxia tolerance in patients with high-altitude respiratory diseases.METHODS A total of 2337 patients with high-altitude-related respiratory diseases treated at our hospital between November 2023 and January 2024 were selected as the study subjects.The subjects’pre-high-altitude residential altitude was approximately 1700 meters.They were divided into two groups.Both groups were given symptomatic treatment,and the control group implemented conventional nursing intervention,while the research group simultaneously conducted CBT intervention;assessed the degree of health knowledge of the two groups,and applied the Hamilton Anxiety Scale and the Pittsburgh Sleep Quality Index to assess the anxiety and sleep quality of the patients before and after the intervention,respectively.It also observed the length and efficiency of sleep,and detected the level of serum hypoxia inducible factor-1α,erythropoietin(EPO)and clinical intervention before and after intervention.EPO levels,and investigated satisfaction with the clinical intervention.RESULTS The rate of excellent health knowledge in the intervention group was 93.64%,which was higher than that in the control group(74.23%;P<0.05).Before the intervention,there was no significant difference in Hamilton Anxiety Scale and Pittsburgh Sleep Quality Index scores between the two groups(P>0.05),and after the intervention,the scores of the study group were significantly lower than those of the control group(P<0.05).There was no significant difference in sleep duration and sleep efficiency between the groups before the intervention(P>0.05),and after the intervention,the scores of the study group were significantly larger than those of the control group(P<0.05).There was no significant difference in serum hypoxia inducible factor-1αand EPO between the two groups before intervention(P>0.05),and both research groups were significantly lower than the control group after intervention(P<0.05).According to the questionnaire survey,the intervention satisfaction of the study group was 95.53%,which was higher than that of the control group(80.14%;P<0.05).CONCLUSION The CBT intervention in the treatment of patients with high-altitude-related respiratory diseases helps improve patients'health knowledge,relieve anxiety,improve sleep quality and hypoxia tolerance,and improve nursing satisfaction.展开更多
BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD....BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.展开更多
The Taklimakan Desert,located in the heart of central Asia,covers approximately 330000 km^(2),making it China's largest desert and the world's second-largest shifting desert(Dong et al.,2024).With an average a...The Taklimakan Desert,located in the heart of central Asia,covers approximately 330000 km^(2),making it China's largest desert and the world's second-largest shifting desert(Dong et al.,2024).With an average annual precipitation of less than 100 mm and evaporation rates ranging from 2000 to 3000 mm(Yang et al.,2020),it is recognized as one of the driest regions on Earth,often referred to as the“sea of death”.展开更多
基金the National Key Research and Development Program of China under contract No.2021YFC2803301the Fundamental Research Funds for the Central Universities,China under contract Nos 2042024kf0037 and 2042022dx0001the Natural Science Foundation of Wuhan under cocntract No.2024040701010030.
文摘Loss of multiyear ice(MYI)is of great importance for Arctic climate and marine systems and can be monitored using active and passive microwave satellite data.In this paper,we describe an upgraded classification algorithm using the data from the scatterometer and radiometer sensors onboard the Chinese Haiyang-2B(HY-2B)satellite to identify MYI and first-year ice(FYI).The proposed method was established based on K-means and fuzzy clustering(K-means+FC)and was used to focus on the transition zone where the ice condition is complex due to the highly commixing of MYI and FYI,leading to the high challenge for accurate classification of sea ice.The K-means algorithm was applied to preliminarily classify MYI using the combination of scatterometer and radiometer data,followed by applying fuzzy clustering to reclassify MYI in the transition zone.The HY-2B K-means+FC results were compared with the ice type products[including the Ocean and Sea Ice Satellite Application Facility(OSI SAF)sea ice type product and the Equal-Area Scalable Earth-Grid sea ice age dataset],and showed agreement in the time series of MYI extent.Intercomparisons in the transition zone indicated that the HY-2B K-means+FC results can identify more old ice than the OSI SAF product,but with an underestimation in identifying second-year ice.Comparisons between K-means and Kmeans+FC results were performed using regional ice charts and Sentinel-1 synthetic aperture radar(SAR)data.By adding fuzzy clustering,the MYI is more consistent with the ice charts,with the overall accuracy(OA)increasing by 0.9%–6.5%.Comparing against SAR images,it is suggested that more scattered MYI floes can be identified by fuzzy clustering,and the OA is increased by about 3%in middle freezing season and 7%–20%in early and late freezing season.
基金support from the National Natural Science Foundation of China(Grant Nos.42107193,42077245)supported by the Sichuan Science and Technology Program(2025YFNH0008,2025YFNH0004)+1 种基金the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(SKLGP2023Z006)the Everest Scientific Research Program 2.0:Research on mechanism and control of glacial lake outburst chain catastrophe in Qinghai-Xizang Plateau based on man-earth coordination perspective.
文摘To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,Scanning Electron Microscopy(SEM),and Nuclear Magnetic Resonance(NMR)experiments were conducted.The mechanical property degradation laws and evolution characteristics of the microscopic pore structure of moraine soil under Freeze-Thaw(F-T)conditions were revealed.After F-T cycles,the stress-strain curves of moraine soil showed a strain-softening trend.In the early stage of F-T cycles(0–5 cycles),the shear strength and elastic modulus exhibited damage rate of approximately 10.33%±0.8%and 16.60%±1.2%,respectively.In the later stage(10–20 cycles),the strength parameters fluctuated slightly and tended to stabilize.The number of F-T cycles was negatively exponentially correlated with cohesion,while showing only slight fluctuation in the internal friction angle,thereby extending the Mohr-Coulomb strength criterion for moraine soil under F-T cycles.The NMR experiments quantitatively characterized the evolution of the internal pore structure of moraine soil under F-T cycles.As the number of F-T cycles increased,fine and micro pores gradually expanded and merged due to the frost-heaving effect during the water-ice phase transition,forming larger pores.The proportion of large and medium pores increased to 59.55%±2.1%(N=20),while that of fine and micro pores decreased to 40.45%±2.1%(N=20).The evolution of pore structure characteristics was essentially completed in the later stage of F-T cycles(10–20 cycles).This study provides a theoretical foundation and technical support for major engineering construction and disaster prevention in the Qinghai-Xizang Plateau.
基金Supported by Army Logistics Department Health Bureau Project,No.QJGYXYJZX-012.
文摘BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and often the condition is prolonged,and the patients are prone to anxiety and uneasiness,which may be related to the harshness of the plateau environment,somatic discomfort due to the lack of oxygen,anxiety about the disease,and other factors.AIM To investigate the effects of cognitive behavioral therapy(CBT)on anxiety,sleep disorders,and hypoxia tolerance in patients with high-altitude respiratory diseases.METHODS A total of 2337 patients with high-altitude-related respiratory diseases treated at our hospital between November 2023 and January 2024 were selected as the study subjects.The subjects’pre-high-altitude residential altitude was approximately 1700 meters.They were divided into two groups.Both groups were given symptomatic treatment,and the control group implemented conventional nursing intervention,while the research group simultaneously conducted CBT intervention;assessed the degree of health knowledge of the two groups,and applied the Hamilton Anxiety Scale and the Pittsburgh Sleep Quality Index to assess the anxiety and sleep quality of the patients before and after the intervention,respectively.It also observed the length and efficiency of sleep,and detected the level of serum hypoxia inducible factor-1α,erythropoietin(EPO)and clinical intervention before and after intervention.EPO levels,and investigated satisfaction with the clinical intervention.RESULTS The rate of excellent health knowledge in the intervention group was 93.64%,which was higher than that in the control group(74.23%;P<0.05).Before the intervention,there was no significant difference in Hamilton Anxiety Scale and Pittsburgh Sleep Quality Index scores between the two groups(P>0.05),and after the intervention,the scores of the study group were significantly lower than those of the control group(P<0.05).There was no significant difference in sleep duration and sleep efficiency between the groups before the intervention(P>0.05),and after the intervention,the scores of the study group were significantly larger than those of the control group(P<0.05).There was no significant difference in serum hypoxia inducible factor-1αand EPO between the two groups before intervention(P>0.05),and both research groups were significantly lower than the control group after intervention(P<0.05).According to the questionnaire survey,the intervention satisfaction of the study group was 95.53%,which was higher than that of the control group(80.14%;P<0.05).CONCLUSION The CBT intervention in the treatment of patients with high-altitude-related respiratory diseases helps improve patients'health knowledge,relieve anxiety,improve sleep quality and hypoxia tolerance,and improve nursing satisfaction.
基金Supported by Science and Technology Department of Sichuan Province,No.2020YFS0376National Natural Science Foundation of China,No.81900599Science and Technology Program of Hospital of TCM,Southwest Medical University,No.2022-CXTD-01.
文摘BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.
基金supported by the National Natural Science Foundation of China(No.42072211)the National Natural Science Foundation of China(No.42401048)the Third Xinjiang Scientific Expedition and Research Program(No.2021xjkk0302)。
文摘The Taklimakan Desert,located in the heart of central Asia,covers approximately 330000 km^(2),making it China's largest desert and the world's second-largest shifting desert(Dong et al.,2024).With an average annual precipitation of less than 100 mm and evaporation rates ranging from 2000 to 3000 mm(Yang et al.,2020),it is recognized as one of the driest regions on Earth,often referred to as the“sea of death”.