氮化镓(GaN)高电子迁移率晶体管(high electron mobility transistor,HEMT)以其击穿场强高、导通电阻低、转换效率高等特点引起科研人员的广泛关注并有望应用于电力电子系统中,但其高功率密度和高频特性给封装技术带来极大挑战。传统硅...氮化镓(GaN)高电子迁移率晶体管(high electron mobility transistor,HEMT)以其击穿场强高、导通电阻低、转换效率高等特点引起科研人员的广泛关注并有望应用于电力电子系统中,但其高功率密度和高频特性给封装技术带来极大挑战。传统硅基电力电子器件封装中寄生电感参数较大,会引起开关振荡等问题,使GaN的优良性能难以充分发挥;另外,封装的热管理能力决定了功率器件的可靠性,若不能很好地解决器件的自热效应,会导致其性能降低,甚至芯片烧毁。本文在阐释传统封装技术应用于氮化镓功率电子器件时产生的开关震荡和热管理问题基础上,详细综述了针对以上问题进行的GaN封装技术研究进展,包括通过优化控制电路、减小电感L_(g)、提高电阻R_(g)抑制dv/dt、在栅电极上加入铁氧体磁环、优化PCB布局、提高磁通抵消量等方法解决寄生电感导致的开关振荡、高导热材料金刚石在器件热管理中的应用、器件封装结构改进,以及其他散热技术等。展开更多
Three different zeolite catalysts with different pore sizes(MFI-type,BEA-type,and FAU-type zeolites)have been prepared.The influence of different zeolite catalysts on reactivity and product shape selectivity of tetral...Three different zeolite catalysts with different pore sizes(MFI-type,BEA-type,and FAU-type zeolites)have been prepared.The influence of different zeolite catalysts on reactivity and product shape selectivity of tetralin is investigated.Clear differences are observed in the reactivity of tetralin and distribution of products achieved by different catalysts.The diffusion and adsorption behavior of the reactant tetralin and its intermediates,n-butylbenzene and 1-methylindane under the reaction conditions are simulated using molecular simulation methods.Upon combining simulation results and experimental observations,it is shown that the difference in diffusion coefficient and competitive adsorption capacity can explain the reactivity of tetralin and the selectivity of products.The steric hindrance of the MFI-type zeolite mainly limits the key step of ring opening of tetralin,leading to lower selectivity of ring-opening products.n-Butylbenzene molecules can diffuse sufficiently fast in the large pores of FAU-type zeolite and the weak adsorption capacity of n-butylbenzene leads to its insufficient cracking.In addition,it also explains the reason that the BEA-type zeolite has the best BTX selectivity,because it can satisfy both good ring-opening activity and sufficient butylbenzene cracking depth.展开更多
文摘氮化镓(GaN)高电子迁移率晶体管(high electron mobility transistor,HEMT)以其击穿场强高、导通电阻低、转换效率高等特点引起科研人员的广泛关注并有望应用于电力电子系统中,但其高功率密度和高频特性给封装技术带来极大挑战。传统硅基电力电子器件封装中寄生电感参数较大,会引起开关振荡等问题,使GaN的优良性能难以充分发挥;另外,封装的热管理能力决定了功率器件的可靠性,若不能很好地解决器件的自热效应,会导致其性能降低,甚至芯片烧毁。本文在阐释传统封装技术应用于氮化镓功率电子器件时产生的开关震荡和热管理问题基础上,详细综述了针对以上问题进行的GaN封装技术研究进展,包括通过优化控制电路、减小电感L_(g)、提高电阻R_(g)抑制dv/dt、在栅电极上加入铁氧体磁环、优化PCB布局、提高磁通抵消量等方法解决寄生电感导致的开关振荡、高导热材料金刚石在器件热管理中的应用、器件封装结构改进,以及其他散热技术等。
文摘Three different zeolite catalysts with different pore sizes(MFI-type,BEA-type,and FAU-type zeolites)have been prepared.The influence of different zeolite catalysts on reactivity and product shape selectivity of tetralin is investigated.Clear differences are observed in the reactivity of tetralin and distribution of products achieved by different catalysts.The diffusion and adsorption behavior of the reactant tetralin and its intermediates,n-butylbenzene and 1-methylindane under the reaction conditions are simulated using molecular simulation methods.Upon combining simulation results and experimental observations,it is shown that the difference in diffusion coefficient and competitive adsorption capacity can explain the reactivity of tetralin and the selectivity of products.The steric hindrance of the MFI-type zeolite mainly limits the key step of ring opening of tetralin,leading to lower selectivity of ring-opening products.n-Butylbenzene molecules can diffuse sufficiently fast in the large pores of FAU-type zeolite and the weak adsorption capacity of n-butylbenzene leads to its insufficient cracking.In addition,it also explains the reason that the BEA-type zeolite has the best BTX selectivity,because it can satisfy both good ring-opening activity and sufficient butylbenzene cracking depth.