A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states...A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.展开更多
Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients a...Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments.展开更多
目的:探讨中期正电子发射计算机断层显像(positron emission tomography-computed tomography,PET-CT)检查在复发性弥漫大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)中的作用。方法:回顾性分析2009年1月至2017年12月中山大学肿...目的:探讨中期正电子发射计算机断层显像(positron emission tomography-computed tomography,PET-CT)检查在复发性弥漫大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)中的作用。方法:回顾性分析2009年1月至2017年12月中山大学肿瘤防治中心收治的38例行中期PET-CT检查的复发性DLBCL患者临床病例资料,其中男性21例、女性17例。采用SPSS 20.0软件进行统计学分析。基线数据采用t、χ~2检验或Fisher精确检验进行比较。生存数据应用寿命表、Kaplan-Meier法、Cox回归等方法进行分析。结果:全组患者中,中期PET-CT评价为有效组[完全缓解(complete response,CR)+部分缓解(partial response,PR)]和无效组[疾病稳定(stable disease,SD)+疾病进展(progression of disease,PD)]患者分别为30例和8例。全组患者的中位总生存期(median overall survival,mOS)和无进展生存期(progression free survival,PFS)分别为77.69和8.44个月。有效组和无效组的mOS分别为77.93和16.37个月(P=0.017);有效组和无效组的中位PFS(median PFS,m PFS)分别为9.86个月和1.80个月(P=0.001)。单因素与多因素分析均显示,中期PET-CT评价为有效的患者获得更长的OS与PFS(P=0.006,P=0.001)。最大标准摄取值(maximum standard uptake value,SUVmax)≤11.05的患者获得更长的PFS和OS,ΔSUVmax>8和最大标准摄取值变化率(maximum standard uptake value%,ΔSUVmax%)>54.5%的患者仅表现出更长的PFS,OS则差异无统计学意义。结论:依照中期PET-CT结果分为有效组和无效组,按照临界值将SUVmax分组对复发性DLBCL患者的OS和PFS均有良好的预测作用,而按照临界值将ΔSUVmax、ΔSUVmax%分组能很好地预测复发性DLBCL患者的PFS。展开更多
To investigate the influence of non-uniform water distribution on the mechanical properties and failure behavior of red sandstone,we designed five immersion heights and durations to achieve varying non-uniform water d...To investigate the influence of non-uniform water distribution on the mechanical properties and failure behavior of red sandstone,we designed five immersion heights and durations to achieve varying non-uniform water distribution states.Uniaxial compression tests were conducted on red sandstone under these conditions.The effects of non-uniform water distribution on deformation,failure,strength,and energy characteristics of red sandstone were analyzed.The impact of non-uniform water distribution on the intensity of rock failure was discussed,and the failure mechanism under non-uniform water distribution was revealed.The hazards of low immersion heights on underground rock structures were analyzed.The results demonstrate that peak strength and elastic modulus of red sandstone exhibit high sensitivity to immersion height,with reductions of 38%and 23%respectively even at L=1/50H.Water immersion reduces both energy storage capacity and energy dissipation capability of red sandstone.The immersion height and duration influence the failure mode of red sandstone by controlling the migration and separation of dry-wet interfaces.Low immersion height poses significant risks to underground rock structures(e.g.,a 38%strength reduction when L=1/50H),and the concentration degree of water non-uniform distribution is the key factor in assessing the weakening effect of water on rocks.展开更多
基金supports from the National Natural Science Foundation of China (Grant Nos.52004143 and 52374095)the open fund for the Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Grant No.SKLMRDPC21KF06).
文摘A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.
基金supported by the Foundation of President of Hebei University(XZJJ202303).
文摘Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments.
基金supported by the National Natural Science Foundation of China(Nos.52474133,52304227,52304091,and 52374095)the Natural Science Foundation of Hunan Province(Nos.2025JJ50316 and 2023JJ40548).
文摘To investigate the influence of non-uniform water distribution on the mechanical properties and failure behavior of red sandstone,we designed five immersion heights and durations to achieve varying non-uniform water distribution states.Uniaxial compression tests were conducted on red sandstone under these conditions.The effects of non-uniform water distribution on deformation,failure,strength,and energy characteristics of red sandstone were analyzed.The impact of non-uniform water distribution on the intensity of rock failure was discussed,and the failure mechanism under non-uniform water distribution was revealed.The hazards of low immersion heights on underground rock structures were analyzed.The results demonstrate that peak strength and elastic modulus of red sandstone exhibit high sensitivity to immersion height,with reductions of 38%and 23%respectively even at L=1/50H.Water immersion reduces both energy storage capacity and energy dissipation capability of red sandstone.The immersion height and duration influence the failure mode of red sandstone by controlling the migration and separation of dry-wet interfaces.Low immersion height poses significant risks to underground rock structures(e.g.,a 38%strength reduction when L=1/50H),and the concentration degree of water non-uniform distribution is the key factor in assessing the weakening effect of water on rocks.