以鲽鱼骨为研究对象,首先采用湿法超微粉碎技术将其加工成微细骨泥,再将其添加到金线鱼鱼糜制品中开发高钙鱼糜制品,从鱼糜溶胶pH值、肌原纤维蛋白Ca2+-ATP酶活力、凝胶强度、质构、持水性、色泽、凝胶溶解度、微观结构方面探讨添加不...以鲽鱼骨为研究对象,首先采用湿法超微粉碎技术将其加工成微细骨泥,再将其添加到金线鱼鱼糜制品中开发高钙鱼糜制品,从鱼糜溶胶pH值、肌原纤维蛋白Ca2+-ATP酶活力、凝胶强度、质构、持水性、色泽、凝胶溶解度、微观结构方面探讨添加不同质量分数(2.5%~12.5%)鱼骨泥对鱼糜制品凝胶品质的影响。结果显示:添加微细鱼骨泥不影响鱼糜正常凝胶的pH值;较低质量分数(不超过5.0%)时,鱼骨泥中的Ca2+可以激活鱼糜溶胶中肌原纤维蛋白的ATP酶,显著提升Ca2+-ATP酶活力;鱼糜凝胶的凝胶强度、质构、持水性、色泽指标均在添加质量分数5.0%鱼骨泥时达到最高值,而凝胶溶解度达到最低值。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分析和扫描电子显微镜观察结果表明,添加质量分数2.5%~5.0%鱼骨泥一定程度上促进了肌球蛋白重链(myosin heavy chain,MHC)的交联,可以促进鱼糜凝胶形成致密均匀的网状结构,过量添加则会影响MHC交联和凝胶网络致密性。展开更多
Micrographs of lychee pericarp and pulp during microwave vacuum drying were tested and analyzed in order to illuminate the microstructure change of lychee and effect of the change on moisture removing in lychee.The re...Micrographs of lychee pericarp and pulp during microwave vacuum drying were tested and analyzed in order to illuminate the microstructure change of lychee and effect of the change on moisture removing in lychee.The results showed that the pericarp consisted of three parts:outer layer with cuticle,inter layer and inner layer.Outer layer and inter layer cells are easily destroyed than inner layer because of small and intact inner layer cells.Furthermore,micrographs showed that the moisture content of pulp keep constant with the temperature increasing at first 40 min due to the inner layer cells prevent the moisture removing from pulp.The long tubular structure of pulp cell would become break and lost over time,because the intercellular spaces reduced and the moisture removing was slow down in pulp.Meanwhile,the microstructure of lychee dried with temperature control was better than that without temperature control.展开更多
文摘以鲽鱼骨为研究对象,首先采用湿法超微粉碎技术将其加工成微细骨泥,再将其添加到金线鱼鱼糜制品中开发高钙鱼糜制品,从鱼糜溶胶pH值、肌原纤维蛋白Ca2+-ATP酶活力、凝胶强度、质构、持水性、色泽、凝胶溶解度、微观结构方面探讨添加不同质量分数(2.5%~12.5%)鱼骨泥对鱼糜制品凝胶品质的影响。结果显示:添加微细鱼骨泥不影响鱼糜正常凝胶的pH值;较低质量分数(不超过5.0%)时,鱼骨泥中的Ca2+可以激活鱼糜溶胶中肌原纤维蛋白的ATP酶,显著提升Ca2+-ATP酶活力;鱼糜凝胶的凝胶强度、质构、持水性、色泽指标均在添加质量分数5.0%鱼骨泥时达到最高值,而凝胶溶解度达到最低值。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分析和扫描电子显微镜观察结果表明,添加质量分数2.5%~5.0%鱼骨泥一定程度上促进了肌球蛋白重链(myosin heavy chain,MHC)的交联,可以促进鱼糜凝胶形成致密均匀的网状结构,过量添加则会影响MHC交联和凝胶网络致密性。
基金the National Natural Science Foundation of China(No.31201399)Shenzhen Technology Innovation Program(No.JCYJ20140508155916427)Program for Science&Technology Innovation Talents in Universities of Henan Province(No.14HASTIT023)for the financial support of materials and the equipment.
文摘Micrographs of lychee pericarp and pulp during microwave vacuum drying were tested and analyzed in order to illuminate the microstructure change of lychee and effect of the change on moisture removing in lychee.The results showed that the pericarp consisted of three parts:outer layer with cuticle,inter layer and inner layer.Outer layer and inter layer cells are easily destroyed than inner layer because of small and intact inner layer cells.Furthermore,micrographs showed that the moisture content of pulp keep constant with the temperature increasing at first 40 min due to the inner layer cells prevent the moisture removing from pulp.The long tubular structure of pulp cell would become break and lost over time,because the intercellular spaces reduced and the moisture removing was slow down in pulp.Meanwhile,the microstructure of lychee dried with temperature control was better than that without temperature control.