The non-relativistic radial Schr¨odinger equation is analytically solved using asymptotic iteration method within the framework of a general interaction potential whose special cases are the Cornell and Cornell p...The non-relativistic radial Schr¨odinger equation is analytically solved using asymptotic iteration method within the framework of a general interaction potential whose special cases are the Cornell and Cornell plus harmonic potentials. The energy eigenvalues expression is derived in three dimensional space, which is further used to calculate the mass spectra of ˉcc,ˉbb,ˉbc, cˉs, bˉs and b ˉq mesons. The obtained results of this work are in good agreement with experimental and other relativistic results and also improved in comparison with other non-relativistic recent studies.展开更多
Here an asymptotic study to the N-dimensional radial Schrdinger equation for the quark-antiquark interaction potential employing asymptotic iteration method via an ansatz to the wavefunction is carried out. The comp...Here an asymptotic study to the N-dimensional radial Schrdinger equation for the quark-antiquark interaction potential employing asymptotic iteration method via an ansatz to the wavefunction is carried out. The complete energy spectra of the consigned system is obtained by computing and adding energy eigenvalues for ground state, for large " r" and for small " r". From this analysis, the mass spectra of heavy quarkonia is derived in three dimensions. Our analytical and numerical results are in good correspondence with other experimental and theoretical studies.展开更多
We investigate the quasi-exact solutions of the Schrodinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x1 ...We investigate the quasi-exact solutions of the Schrodinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px= p1+ ix3, py= p2 + ix4. Explicit expressions of the energy eigenvalues and the eigenfunctions for ground and first excited states for a complex quartic potential are obtained. Eigenvalue spectra of some variants of the complex quartic potential, including PT-symmetrie one, are also worked out.展开更多
This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensional PT-symmetric coupled quintic potential in its most general form. Employing wavefunction ansatz method, general an...This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensional PT-symmetric coupled quintic potential in its most general form. Employing wavefunction ansatz method, general analytic expressions for eigenvalues and eigenfunctions for first four states are obtained. Solutions of a particular case are also presented.展开更多
We deal with the solutions to the radial Schr(o)dinger equation for the Coulomb perturbed potential in Ndimensional Hilbert space by using two methods,i.e.the power series technique via a suitable ansatz to the wavefu...We deal with the solutions to the radial Schr(o)dinger equation for the Coulomb perturbed potential in Ndimensional Hilbert space by using two methods,i.e.the power series technique via a suitable ansatz to the wavefunction and the Virial theorem.Analytic expressions for eigenvalues and normalized eigenfunctions are derived.A recursion relation among series expansion coefficients,a condition for convergence of series and interdimensional degeneracies are also investigated.As special cases,the problem is solved in 3 and 4 dimensions with some specific parameter values.The obtained analytical and numerical results are in good agreement with the results of other studies.展开更多
基金financial support through the UGC-BSR fellowship
文摘The non-relativistic radial Schr¨odinger equation is analytically solved using asymptotic iteration method within the framework of a general interaction potential whose special cases are the Cornell and Cornell plus harmonic potentials. The energy eigenvalues expression is derived in three dimensional space, which is further used to calculate the mass spectra of ˉcc,ˉbb,ˉbc, cˉs, bˉs and b ˉq mesons. The obtained results of this work are in good agreement with experimental and other relativistic results and also improved in comparison with other non-relativistic recent studies.
基金University Grant Commission(UGC) INDIA for providing the financial assistance in terms of UGC-SRF
文摘Here an asymptotic study to the N-dimensional radial Schrdinger equation for the quark-antiquark interaction potential employing asymptotic iteration method via an ansatz to the wavefunction is carried out. The complete energy spectra of the consigned system is obtained by computing and adding energy eigenvalues for ground state, for large " r" and for small " r". From this analysis, the mass spectra of heavy quarkonia is derived in three dimensions. Our analytical and numerical results are in good correspondence with other experimental and theoretical studies.
文摘We investigate the quasi-exact solutions of the Schrodinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px= p1+ ix3, py= p2 + ix4. Explicit expressions of the energy eigenvalues and the eigenfunctions for ground and first excited states for a complex quartic potential are obtained. Eigenvalue spectra of some variants of the complex quartic potential, including PT-symmetrie one, are also worked out.
文摘This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensional PT-symmetric coupled quintic potential in its most general form. Employing wavefunction ansatz method, general analytic expressions for eigenvalues and eigenfunctions for first four states are obtained. Solutions of a particular case are also presented.
基金Supported by University Grant Commission(UGC)of India through the UGC-SRF Scheme.
文摘We deal with the solutions to the radial Schr(o)dinger equation for the Coulomb perturbed potential in Ndimensional Hilbert space by using two methods,i.e.the power series technique via a suitable ansatz to the wavefunction and the Virial theorem.Analytic expressions for eigenvalues and normalized eigenfunctions are derived.A recursion relation among series expansion coefficients,a condition for convergence of series and interdimensional degeneracies are also investigated.As special cases,the problem is solved in 3 and 4 dimensions with some specific parameter values.The obtained analytical and numerical results are in good agreement with the results of other studies.